
- •Федеральное агентство по образованию
- •Введение
- •1. Панорама современного естествознания
- •1.1. Естественнонаучная и гуманитарная культура
- •1.2.Научный метод
- •1.3. История развития естествознания
- •1.4.Физика - основа современного естествознания
- •2. Иерархия структур в микро-, макро- и мегамире
- •Звёзды. Галактики. Вселенная
- •3. Представление о концепциях материи, движения, пространства и времени
- •3.1.Основные свойства пространства и времени
- •3. 2. Принципы относительности и инвариантность. Симметрия
- •4. Механическое движение. Классическая концепция Ньютона
- •4.1. Физические величины и их единицы измерения
- •4.2. Классическая концепция Ньютона
- •Силы. Закон всемирного тяготения
- •Закон сохранения импульса
- •4.3. Работа, мощность, энергия
- •4.4. Закон сохранения механической энергии
- •4.5. Общефизический закон сохранения энергии
- •5. Колебания и волны
- •5.1. Гармонические колебания и их характеристики
- •5.2. Вынужденные колебания. Резонанс
- •5.3. Волновые процессы
- •5.4. Свойства волн: интерференция, дифракция
- •6. Фундаментальные взаимодействия
- •6.1. Концепции близкодействия и дальнодействия
- •6.2 Виды фундаментальных взаимодействий
- •6.3. Понятие физического поля
- •6.4. Гравитационное поле
- •6.5. Электромагнитные поля и волны
- •6.6. Принцип суперпозиции
- •6.7. Шкала электромагнитных волн
- •7. Статистические и термодинамические свойства макросистем
- •7.1. Основные понятия молекулярной физики
- •7.2. Термодинамические законы
- •7.3. Энтропия
- •7.4. Второе начало термодинамики
- •7.5. Термодинамика открытых систем
- •8. Концепция корпускулярно-волнового дуализма
- •8.1. Природа света
- •8.2. Корпускулярно-волновые свойства микрочастиц
- •8.3. Принципы неопределённости и дополнительности
- •9. Элементы атомной и ядерной физики
- •9.1. Физика атома
- •9.2. Строение атомного ядра
- •9.3. Дефект массы и энергия связи ядра. Явление радиоактивности. Виды радиоактивного распада
- •9.4. Ядерные и термоядерные реакции
- •9.5. Воздействие излучения на человека. Радиационно-биологические процессы
- •10. Развитие химических концепций
- •10.1. Эволюция химических знаний
- •10.2. Основные понятия химии
- •10.3. Периодическая система химических элементов д.И. Менделеева и её современный вид
- •10.4. Виды химической связи
- •10.5. Реакционная способность веществ. Химические реакции
- •Скорость химических реакций. Современный катализ
- •Обратимые и необратимые химические реакции
- •Принцип Ле Шателье
- •Тепловой эффект реакции
- •10.6. Методы качественного и количественного анализа
- •10.7. Синтез вещества
- •11. Мегамир: современные космологические концепции
- •11.1. Концепции эволюции Вселенной
- •11.2. Концепции эволюции звездных объектов
- •Черные дыры
- •Белые карлики
- •Нейтронные звезды
- •Пульсары
- •Квазары
- •11.3. Концепции эволюции Солнечной системы
- •12. Планета Земля и современные представления о литосфере
- •12.2. Теория литосферных плит
- •12.3. Географическая оболочка Земли
- •12.4. Условия, способствующие возникновению жизни на Земле.
- •13. Биосфера. Биологические концепции
- •13.1. Развитие биологических концепций
- •13.2. Концепции происхождения жизни
- •13.3. Принципы развития, эволюции и воспроизводства живых систем
- •13.4. Биосфера и ее свойства
- •13.5. Биологические уровни организации материи
- •13.6. Генетика и эволюция
- •14.Экология в современном мире
- •14.1. Основные направления экологии
- •14.2. Вредные вещества и их реальная опасность
- •14.3. Сохранение озонового слоя
- •14.4. Кислотные осадки
- •14.5. Парниковый эффект
- •14.6. Захоронение радиоактивных отходов
- •15. Феномен Человек
- •15.1. Возникновение человека
- •15.2. Человек: физиология, здоровье, работоспособность, эмоции
- •15.3. Творчество
- •15.4. Биоэтика
- •15.5. Космические и биологические циклы
- •16.Самоорганизация в природе
- •16.1. Синергетика - новая междисциплинарная наука
- •16.2. Порядок из хаоса
- •16.3. Диссипативные структуры
- •16.4. Концепции самоорганизации
- •Принцип универсального эволюционизма. Путь к единой культуре
10.7. Синтез вещества
Синтез – получение сложных веществ из более простых, основанное на знании молекулярного строения и реакционной способности последних. Особенно большое значение имеет в органической химии. На основе органического синтеза возникли и развились крупнейшие отрасли промышленности: красителей, пластмасс, синтетических каучуков и др. Существует фото- и биосинтез.
Фотохимический синтез основан на действии излучения. После поглощения энергии молекула переходит в возбужденное энергетическое состояние. Химические свойства молекул существенно зависят от свойств поглощенного света. Активность химического синтеза в значительной степени зависит от длинны волны возбуждаемого излучения и температуры.
Биосинтез. Среди природных веществ есть регуляторы роста растений и животных, органические соединения, используемые насекомыми в качестве средств коммуникации, пестициды, антибиотики, витамины и многие целебные вещества. Природное соединение сначала необходимо обнаружить, затем выделить его химическим путем, определить его структуру и свойства и, наконец, произвести необходимый синтез.
Одно из важнейших достижений химии сверхвысоких давлений – синтез алмазов, который осуществляется при давлении 50000 атм и температуре 20000С. Промышленный синтез алмазов основан на превращении графита в реакторе высокого давления. Катализатором при этом служат различные вещества: металлический никель, сложные смеси железа, никеля и хрома, смеси карбида железа с графитом и т.п.
В настоящее время налажено производство не только искусственных алмазов, но и других драгоценных камней: корунда (красного рубина и синего сапфира), изумруда и др.
11. Мегамир: современные космологические концепции
Мегамир или космос современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел. Мегамир имеет системную организацию в форме планет и планетных систем (возникающих вокруг звезд), звезд и звездных систем – галактик (см.п.11.2.). Все существующие галактики входят в систему самого высокого порядка – Метагалактику. Размеры Метагалактики грандиозны: радиус космологического горизонта составляет 15 – 20 млрд. световых лет (I световой год (св.г.) = 9,4605·1015 м). Понятие «Метагалактика» очень близко понятию «Вселенная».
Вселенная – весь существующий материальный мир, безграничный во времени и пространстве, бесконечно разнообразный по формам, которые принимает материя в процессе своего развития. Возраст Вселенной порядка 18 млрд. лет.
Метагалактика – тот же мир, но с точки зрения его структуры – как упорядоченная система галактик.
Современные космологические модели Вселенной основываются на общей теории относительности (ОТО). Свойства Вселенной как целого обусловлены средней плотностью материи и другими физическими факторами. Её динамика определяется гравитационным взаимодействием тел.
11.1. Концепции эволюции Вселенной
Существуют три концепции эволюции Вселенной:
1. Гипотеза Большого взрыва.
2. Инфляционная модель Вселенной, отличие которой от первой концепции касается только первоначального этапа возникновения мира (порядка 10-30с) и связано с расхождением мировоззренческих установок.
3. Концепция креационизма, т.е. творения. При этом эволюция Вселенной связывается с реализацией программы, определяемой реальностью более высокого порядка, чем материальный мир.
Остановимся более подробно на первой концепции.
В 1922 г. российский математик Фридман создал теорию эволюции наблюдаемой Вселенной, в соответствии с которой получен важный вывод: Вселенная является нестационарной системой. Причем возможны два основных варианта её эволюции: бесконечное расширение или пульсирующее расширение и сжатие. В настоящее время Вселенная расширяется, но будет ли она когда-то сжиматься пока неизвестно.
Ученик Фридмана Гамов разработал модель начальной стадии горячей Вселенной и назвал её «космологией Большого Взрыва». Согласно этой теории, в результате Взрыва высвободилось огромное количество энергии и раскаленного до миллиардов градусов первовещества.
В современной космологии начальную стадию эволюции Вселенной делят на эры (эпохи): эра адронов, эра лептонов, ядерная эра, фотонная эра и звездная эра.
Эра адронов. Продолжительность 10-4 с, температура 1012 К. Эра лептонов. Временный интервал 10-4 с < t <1 c, температура ~ 1010 К. Ядерная эра. Временной интервал 1 с < t <100 c, температура изменяется от 1010 К до 109 К. Фотонная эра. Продолжительность ~ 1 млн. лет. К концу эры температура падает до ~ 400 К.
Звездная эра наступает через 1 млн. лет после зарождения Вселенной, когда начинается процесс образования протозвезд и протогалактик. (Протозвезды – звезды, в недрах которых ещё не достигнуты температуры, необходимые для начала термоядерной реакции. Протогалактика включает в себя протозвезды). Затем разворачивается грандиозная картина образования структуры Метагалактики.
Галактики (galaktikos – млечный) – гигантские (до сотен млрд звезд) системы, состоящие из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию.
По форме галактики условно делят на четыре типа: эллиптические, спиральные, линзообразные и неправильные. Некоторые галактики характеризуются исключительно мощным радиоизлучением, превосходящим видимое излучение. Это радиогалактики.
Наша Галактика, которую можно наблюдать в виде Млечного Пути, имея примерный возраст 10 млрд. лет, насчитывает в своем составе по усредненным оценкам около 200 млрд. звезд. В свою очередь наша спиральная Галактика входит в так называемую Местную Группу галактик, находящуюся на периферии еще более крупного галактического образования – Сверхскопления галактик, образованного примерно из 10 000 галактических объектов и имеющего диаметр около 40 Мпк (I парсек (пк)=3,60857·1016м).