Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КСЕ.doc
Скачиваний:
75
Добавлен:
09.04.2015
Размер:
633.34 Кб
Скачать

10.7. Синтез вещества

Синтез – получение сложных веществ из более простых, основанное на знании молекулярного строения и реакционной способности последних. Особенно большое значение имеет в органической химии. На основе органического синтеза возникли и развились крупнейшие отрасли промышленности: красителей, пластмасс, синтетических каучуков и др. Существует фото- и биосинтез.

Фотохимический синтез основан на действии излучения. После поглощения энергии молекула переходит в возбужденное энергетическое состояние. Химические свойства молекул существенно зависят от свойств поглощенного света. Активность химического синтеза в значительной степени зависит от длинны волны возбуждаемого излучения и температуры.

Биосинтез. Среди природных веществ есть регуляторы роста растений и животных, органические соединения, используемые насекомыми в качестве средств коммуникации, пестициды, антибиотики, витамины и многие целебные вещества. Природное соединение сначала необходимо обнаружить, затем выделить его химическим путем, определить его структуру и свойства и, наконец, произвести необходимый синтез.

Одно из важнейших достижений химии сверхвысоких давлений – синтез алмазов, который осуществляется при давлении 50000 атм и температуре 20000С. Промышленный синтез алмазов основан на превращении графита в реакторе высокого давления. Катализатором при этом служат различные вещества: металлический никель, сложные смеси железа, никеля и хрома, смеси карбида железа с графитом и т.п.

В настоящее время налажено производство не только искусственных алмазов, но и других драгоценных камней: корунда (красного рубина и синего сапфира), изумруда и др.

11. Мегамир: современные космологические концепции

Мегамир или космос современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел. Мегамир имеет системную организацию в форме планет и планетных систем (возникающих вокруг звезд), звезд и звездных систем – галактик (см.п.11.2.). Все существующие галактики входят в систему самого высокого порядка – Метагалактику. Размеры Метагалактики грандиозны: радиус космологического горизонта составляет 15 – 20 млрд. световых лет (I световой год (св.г.) = 9,4605·1015 м). Понятие «Метагалактика» очень близко понятию «Вселенная».

Вселенная – весь существующий материальный мир, безграничный во времени и пространстве, бесконечно разнообразный по формам, которые принимает материя в процессе своего развития. Возраст Вселенной порядка 18 млрд. лет.

Метагалактика – тот же мир, но с точки зрения его структуры – как упорядоченная система галактик.

Современные космологические модели Вселенной основываются на общей теории относительности (ОТО). Свойства Вселенной как целого обусловлены средней плотностью материи и другими физическими факторами. Её динамика определяется гравитационным взаимодействием тел.

11.1. Концепции эволюции Вселенной

Существуют три концепции эволюции Вселенной:

1. Гипотеза Большого взрыва.

2. Инфляционная модель Вселенной, отличие которой от первой концепции касается только первоначального этапа возникновения мира (порядка 10-30с) и связано с расхождением мировоззренческих установок.

3. Концепция креационизма, т.е. творения. При этом эволюция Вселенной связывается с реализацией программы, определяемой реальностью более высокого порядка, чем материальный мир.

Остановимся более подробно на первой концепции.

В 1922 г. российский математик Фридман создал теорию эволюции наблюдаемой Вселенной, в соответствии с которой получен важный вывод: Вселенная является нестационарной системой. Причем возможны два основных варианта её эволюции: бесконечное расширение или пульсирующее расширение и сжатие. В настоящее время Вселенная расширяется, но будет ли она когда-то сжиматься пока неизвестно.

Ученик Фридмана Гамов разработал модель начальной стадии горячей Вселенной и назвал её «космологией Большого Взрыва». Согласно этой теории, в результате Взрыва высвободилось огромное количество энергии и раскаленного до миллиардов градусов первовещества.

В современной космологии начальную стадию эволюции Вселенной делят на эры (эпохи): эра адронов, эра лептонов, ядерная эра, фотонная эра и звездная эра.

Эра адронов. Продолжительность 10-4 с, температура 1012 К. Эра лептонов. Временный интервал 10-4 с < t <1 c, температура ~ 1010 К. Ядерная эра. Временной интервал 1 с < t <100 c, температура изменяется от 1010 К до 109 К. Фотонная эра. Продолжительность ~ 1 млн. лет. К концу эры температура падает до ~ 400 К.

Звездная эра наступает через 1 млн. лет после зарождения Вселенной, когда начинается процесс образования протозвезд и протогалактик. (Протозвезды – звезды, в недрах которых ещё не достигнуты температуры, необходимые для начала термоядерной реакции. Протогалактика включает в себя протозвезды). Затем разворачивается грандиозная картина образования структуры Метагалактики.

Галактики (galaktikos – млечный) – гигантские (до сотен млрд звезд) системы, состоящие из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию.

По форме галактики условно делят на четыре типа: эллиптические, спиральные, линзообразные и неправильные. Некоторые галактики характеризуются исключительно мощным радиоизлучением, превосходящим видимое излучение. Это радиогалактики.

Наша Галактика, которую можно наблюдать в виде Млечного Пути, имея примерный возраст 10 млрд. лет, насчитывает в своем составе по усредненным оценкам около 200 млрд. звезд. В свою очередь наша спиральная Галактика входит в так называемую Местную Группу галактик, находящуюся на периферии еще более крупного галактического образования – Сверхскопления галактик, образованного примерно из 10 000 галактических объектов и имеющего диаметр около 40 Мпк (I парсек (пк)=3,60857·1016м).