
- •1.Электрическое поле в вакууме. Напряжённость электрического поля.
- •2. Закон сохранения электрического заряда. Закон Кулона.
- •3.Основные определения векторного анализа: градиент, поток вектора, циркуляция, дивергенция, ротор. Примеры.
- •4.Теорема Остроградского — Гаусса. Электрическое поле заряженной плоскости, цилиндрической и сферической поверхности.
- •5. Дифференциальная форма теоремы Остроградского-Гаусса
- •6. Работа электрических сил. Потенциал электростатического поля.
- •7. Градиент электрического потенциала и вектор е. Силовые линии поля. Эквипотенциальные поверхности.
- •8.Диполь в электрическом поле. Поле диполя. Момент сил, действующих на диполь. Энергия диполя в роле.
- •9.Поле внутри проводника и у его поверхности. Свойства замкнутой проводящей оболочки. Электростатическая защита.
- •10. Классическая теория электропроводности металлов. Пределы её применимости.
- •11.Электрический ток в вакууме и газах. Несамостоятельный и самостоятельный газовый разряд.
- •12. Электрический ток в жидкостях. Законы электролиза Фарадея.
- •13. Электроёмкость уединённого проводника. Ёмкость проводника, имеющёго форму шара радиусом r. Единица ёмкости
- •14. Параллельное и последовательное соединение конденсаторов. Ёмкость плоского, цилиндрического и сферического конденсаторов.
- •15. Электростатическое поле в диэлектрике. Полярные и неполярные диэлектрики.
- •16)Диэлектрическая восприимчивость. Свободные и связные заряды.
- •Зависимость от времени
- •17)Электрическая индукция. Теорема Гаусса для поля вектора d. Дифференциальная форма теоремы.
- •18) Связь между векторами d и e. Диэлектрическая проницаемость.
- •19) Граничные условия для векторов e и d. Преломление линий e и d. Поле в однородном диэлектрике.
- •20) Энергия взаимодействия системы точечных зарядов; зарядов распределенных непрерывно по объему и по поверхности
- •21) Энергия уединенного проводника. Энергия конденсатора.
- •22) Плотность энергии электрического поля (на примере плоского конденсатора)
- •23) Постоянный ток. Единица измерения. Плотность тока. Уравнение непрерывности
- •24)Диффиринциальная форма ур-я непрывности. Условие стационарности.
- •25) Сторонние силы. Эдс. Напряжение. Обобщенный закон Ома.
- •26) Закон Ома для замкнутой цепи, участка цепи, содержащего эдс.
- •27) Дифференциальная форма закона Ома.
- •28) Разветвленные цепи. Правила Кирхгофа
- •29) Закон Джоуля-Ленца. Дифференциальная форма закона Джоуля-Ленца
- •30. Магнитное поле. Сила Лоренца. Сила Ампера.
- •32.Магнитное поле прямолинейного тока,кругового тока.Сила взаимодействия прямолинейных токов.
- •2. Магнитное поле в центре кругового проводника с током.
- •33.Дивергенция, циркуляция, ротор и поток магнитной индукции.
- •34.Графическое представление поля в. Теорема Гаусса для поля в.
- •35.Закон полного тока. Потенциальные и соленоидные векторные поля
- •36.Магнитное поле прямого тока, бесконечного соленоида, тороида.
- •37.Дифференциальная форма основных законов магнитного поля. Дивергенция и ротор поля b.
- •38.Магнитный момент. Силы, действующие на магнитный момент и его энергия в магнитном поле.
- •39. Работа по перемещению проводника и контура с током в магнитном поле.
- •40.Движение заряженных частиц в электрическом и магнитном поле.Эффект Холла.
- •41. Магнитные свойства вещества. Пара-, диа-, ферро-, ферри- и антиферромагнетики.
- •42. Опыт Эйнштейна – де Гааза. Опыт Барнета. Магнетомеханическое отношение спин электрона.
- •43. Магнитная восприимчивость и проницаемость. Намагничивание вещества. Напряжённость магнитного поля.
- •44. Закон электромагнитной индукции Фарадея. Правило Ленца.
- •45. Природа электромагнитной индукции. Вихревое электрическое поле.
- •46. Способы измерения индукции магнитного потока. Единица измерения магнитного потока.
- •48. Взаимная индукция. Теорема взаимности.
- •49. Потенциальные и соленоидальные векторные поля. Необходимое и достаточное условие потенциальности векторного поля.
- •50. Энергия магнитного поля. Изолированный контур с током.
- •51. Магнитная энергия тока. Плотность энергии магниного поля. Энергия соленоида.
- •52. Переменный ток. Конденсатор, индуктивность и сопротивление в цепи переменного тока.
- •54. Колебательный контур. Свободные и затухающие колебания.
- •55. Вынужденные колебания. Резонанс.
- •56. Уравнение Максвелла. Интегральная и дифференциальная форма уравнений. Вектор Пойнтинга. Физический смысл уравнений Максвелла.
- •57. Ток смещения. Закон сохранения энергии для электромагнитного поля.
- •58. Электормагнитные волны. Волновое уравнение. Поляризация. Плоские, сферические и цилиндрические волны.
- •59. Проводимость полупроводников. Элементы зонной теории кристаллов.
- •60. Собственные и примесные полупроводники. Дрейфовый и диффузные токи. P-n переходы.
57. Ток смещения. Закон сохранения энергии для электромагнитного поля.
Для
установления количественных соотношений
между изменяющимся электрическим полем
и вызываемым им магнитным полем
Максвелл ввел в рассмотрение так
называемый ток
смещения.
Выражение и было названо Максвеллом плотностью тока смещения.
В диэлектриках ток смещения состоит из двух слагаемых. Так как, согласно (89.2), D=0E+P, где Е – напряженность электростатического поля, а Р — поляризованность, то плотность тока смещения
где
0
— плотность
тока смещения в вакууме,
— плотность
тока поляризации
— тока, обусловленного упорядоченным
движением электрических зарядов в
диэлектрике (смещение зарядов в
неполярных молекулах или поворот диполей
в полярных молекулах). Следует
отметить, что название «ток смещения»
является условным, а точнее —
исторически сложившимся, так как ток
смещения по своей сути — это изменяющееся
со временем электрическое поле.
Закон сохранения энергии электромагнитного поля (лекция)
(1.31),
где вектор
называется
вектором
Пойнтинга
,
(1.32) или
.
Вектор
Пойнтинга
имеет
смысл плотности потока электромагнитной
энергии, т.е. определяет мощность,
переносимую волной через некоторую
eдиничную площадку, ориентированную
перпендикулярно направлению ее
распространения.
Уравнение
(1.31) выражает закон сохранения энергии
для электромагнитного поля. Проинтегрируем
обе части уравнения (1.31) по некоторому
объему V, ограниченному замкнутой
поверхностью
.
Интеграл по объему в правой части
преобразуем с помощью известной теоремы
Остроградского-Гаусса в интеграл по
поверхности
,
ограничивающей этот объем:
58. Электормагнитные волны. Волновое уравнение. Поляризация. Плоские, сферические и цилиндрические волны.
Электромагнитными колебаниями называются периодические изменения напряженности Е и индукции В.
Электромагнитными колебаниями являются радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновские лучи, гамма-лучи.
Таким образом в векторнозначном дифференциальном уравнении для электрического поля, а именно(1)
Применяя аналогичные исходные результаты в аналогичном дифференциальном уравнении для магнитного поля(2)
Волновые поверхности могут быть любой формы, а в простейшем случае они представляют собой совокупность плоскостей, параллельных друг другу, или совокупность концентрических сфер. Соответственно волна называется плоской или сферической, или цилиндрической.
Распространение волн в однородной изотропной среде в общем случае описывается волновым уравнением — дифференциальным уравнением в частных производных
или
Поляризация — для электромагнитных волн это явление направленного колебания векторов напряженности электрического поля E или напряженности магнитного поля H. Когерентное электромагнитное излучение может иметь:
Линейную поляризацию — в направлении, перпендикулярном направлению распространения волны;
Круговую поляризацию — правую либо левую, в зависимости от направления вращения вектора индукции;
Эллиптическую поляризацию — случай, промежуточный между круговой и линейными поляризациями.
Некогерентное излучение может не быть поляризованным, либо быть полностью или частично поляризованным любым из указанных способов. В этом случае понятие поляризации понимается статистически.
При теоретическом рассмотрении поляризации волна полагается распространяющейся горизонтально. Тогда можно говорить о вертикальной и горизонтальной линейных поляризациях волны.