
- •1.Электрическое поле в вакууме. Напряжённость электрического поля.
- •2. Закон сохранения электрического заряда. Закон Кулона.
- •3.Основные определения векторного анализа: градиент, поток вектора, циркуляция, дивергенция, ротор. Примеры.
- •4.Теорема Остроградского — Гаусса. Электрическое поле заряженной плоскости, цилиндрической и сферической поверхности.
- •5. Дифференциальная форма теоремы Остроградского-Гаусса
- •6. Работа электрических сил. Потенциал электростатического поля.
- •7. Градиент электрического потенциала и вектор е. Силовые линии поля. Эквипотенциальные поверхности.
- •8.Диполь в электрическом поле. Поле диполя. Момент сил, действующих на диполь. Энергия диполя в роле.
- •9.Поле внутри проводника и у его поверхности. Свойства замкнутой проводящей оболочки. Электростатическая защита.
- •10. Классическая теория электропроводности металлов. Пределы её применимости.
- •11.Электрический ток в вакууме и газах. Несамостоятельный и самостоятельный газовый разряд.
- •12. Электрический ток в жидкостях. Законы электролиза Фарадея.
- •13. Электроёмкость уединённого проводника. Ёмкость проводника, имеющёго форму шара радиусом r. Единица ёмкости
- •14. Параллельное и последовательное соединение конденсаторов. Ёмкость плоского, цилиндрического и сферического конденсаторов.
- •15. Электростатическое поле в диэлектрике. Полярные и неполярные диэлектрики.
- •16)Диэлектрическая восприимчивость. Свободные и связные заряды.
- •Зависимость от времени
- •17)Электрическая индукция. Теорема Гаусса для поля вектора d. Дифференциальная форма теоремы.
- •18) Связь между векторами d и e. Диэлектрическая проницаемость.
- •19) Граничные условия для векторов e и d. Преломление линий e и d. Поле в однородном диэлектрике.
- •20) Энергия взаимодействия системы точечных зарядов; зарядов распределенных непрерывно по объему и по поверхности
- •21) Энергия уединенного проводника. Энергия конденсатора.
- •22) Плотность энергии электрического поля (на примере плоского конденсатора)
- •23) Постоянный ток. Единица измерения. Плотность тока. Уравнение непрерывности
- •24)Диффиринциальная форма ур-я непрывности. Условие стационарности.
- •25) Сторонние силы. Эдс. Напряжение. Обобщенный закон Ома.
- •26) Закон Ома для замкнутой цепи, участка цепи, содержащего эдс.
- •27) Дифференциальная форма закона Ома.
- •28) Разветвленные цепи. Правила Кирхгофа
- •29) Закон Джоуля-Ленца. Дифференциальная форма закона Джоуля-Ленца
- •30. Магнитное поле. Сила Лоренца. Сила Ампера.
- •32.Магнитное поле прямолинейного тока,кругового тока.Сила взаимодействия прямолинейных токов.
- •2. Магнитное поле в центре кругового проводника с током.
- •33.Дивергенция, циркуляция, ротор и поток магнитной индукции.
- •34.Графическое представление поля в. Теорема Гаусса для поля в.
- •35.Закон полного тока. Потенциальные и соленоидные векторные поля
- •36.Магнитное поле прямого тока, бесконечного соленоида, тороида.
- •37.Дифференциальная форма основных законов магнитного поля. Дивергенция и ротор поля b.
- •38.Магнитный момент. Силы, действующие на магнитный момент и его энергия в магнитном поле.
- •39. Работа по перемещению проводника и контура с током в магнитном поле.
- •40.Движение заряженных частиц в электрическом и магнитном поле.Эффект Холла.
- •41. Магнитные свойства вещества. Пара-, диа-, ферро-, ферри- и антиферромагнетики.
- •42. Опыт Эйнштейна – де Гааза. Опыт Барнета. Магнетомеханическое отношение спин электрона.
- •43. Магнитная восприимчивость и проницаемость. Намагничивание вещества. Напряжённость магнитного поля.
- •44. Закон электромагнитной индукции Фарадея. Правило Ленца.
- •45. Природа электромагнитной индукции. Вихревое электрическое поле.
- •46. Способы измерения индукции магнитного потока. Единица измерения магнитного потока.
- •48. Взаимная индукция. Теорема взаимности.
- •49. Потенциальные и соленоидальные векторные поля. Необходимое и достаточное условие потенциальности векторного поля.
- •50. Энергия магнитного поля. Изолированный контур с током.
- •51. Магнитная энергия тока. Плотность энергии магниного поля. Энергия соленоида.
- •52. Переменный ток. Конденсатор, индуктивность и сопротивление в цепи переменного тока.
- •54. Колебательный контур. Свободные и затухающие колебания.
- •55. Вынужденные колебания. Резонанс.
- •56. Уравнение Максвелла. Интегральная и дифференциальная форма уравнений. Вектор Пойнтинга. Физический смысл уравнений Максвелла.
- •57. Ток смещения. Закон сохранения энергии для электромагнитного поля.
- •58. Электормагнитные волны. Волновое уравнение. Поляризация. Плоские, сферические и цилиндрические волны.
- •59. Проводимость полупроводников. Элементы зонной теории кристаллов.
- •60. Собственные и примесные полупроводники. Дрейфовый и диффузные токи. P-n переходы.
46. Способы измерения индукции магнитного потока. Единица измерения магнитного потока.
Способы измерения магнитной индукции
Магнитная индукция в данной точке однородного магнитного поля определяется максимальным вращающим моментом, действующим на рамку с магнитным моментом, равным единице, когда нормаль к рамке перпендикулярна направлению поля. Следует отметить, что вектор В может быть выведен также из закона Ампера и из выражения для силы Лоренца .
Потоком вектора
магнитной индукции (магнитным потоком)
через площадку dS
называется скалярная
физическая величина, равная
где Bn=В cos —проекция вектора В на направление нормали к площадке dS ( — угол между векторами n и В), dS=dSn — вектор, модуль которого равен dS, а направление его совпадает с направлением нормали n к площадке.
Поток вектора
магнитной индукции ФB
через произвольную поверхность S
равен
Для однородного поля и плоской поверхности, расположенной перпендикулярно вектору В, Bn=B=const и
Из этой формулы определяется единица магнитного потока вебер (Вб): 1 Вб — магнитный поток, проходящий сквозь плоскую поверхность площадью 1 м2, расположенную перпендикулярно однородному магнитному полю, индукция которого равна 1 Тл (1 Вб=1 Тлм2).
47. Самоиндукция.
Индуктивность. Индуктивность соленоида
-Электрический ток, текущий в замкнутом
контуре, создает вокруг себя магнитное
поле, индукция которого, по закону Био
— Савара — Лапласа (см. (110.2)), пропорциональна
току. Сцепленный с контуром магнитный
поток Ф поэтому пропорционален току I
в контуре:
где коэффициент пропорциональности L называется индуктивностью контура.
При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией.
Из выражения определяется единица индуктивности генри (Гн): 1 Гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб:
Рассчитаем
индуктивность
бесконечно длинного соленоида.
Полный магнитный поток сквозь соленоид
(потокосцепление) равен
Подставив это выражение в формулу
получим
т. е. индуктивность соленоида зависит от числа витков соленоида N, его длины l, площади S и магнитной проницаемости вещества, из которого изготовлен сердечник соленоида.
Если контур не
деформируется и магнитная проницаемость
среды не изменяется ,то L
= const
и
где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктивности в контуре приводит к замедлению изменения тока в нем.
-Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией. Коэффициенты пропорциональности L21 и L12 называются взаимной индуктивностью контуров. Расчеты, подтверждаемые опытом, показывают, что L21 и L12 равны друг другу, т. е.
Коэффициенты L12 и L21 зависят от геометрической формы, размеров, взаимного расположения контуров и от магнитной проницаемости окружающей контуры среды. Единица взаимной индуктивности та же, что и для индуктивности, — генри (Гн).
-необх. И и дост. Усл вект потенц поля