Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_k_fiziologii.docx
Скачиваний:
280
Добавлен:
03.04.2015
Размер:
4.49 Mб
Скачать
  1. Понятия: возбудимость и раздражимость.

Со­стояние покоя биосистемы можно наблюдать при отсутствии специ­альных раздражающих воздействий извне.   Оно  характеризуется  относительным постоянством текущих значений физиологических пара­метров и отсутствием проявлений специфических функций. Понятие покоя является относительным, поскольку изменения физиологичес­ких параметров всетаки происходят, но не достигают значений, определяющих проявление специфической функции живой системы.

При изменениях внешней или внутренней среды биосистема мо­жет переходить в активное или деятельное состояние.

Раздражимость

Раздражи­мостью называется способность живых организмов и образующих их систем (органов, тканей, кле­ток) реагировать на внешнее воздействие изменением своих физи­ко-химических и физиологических свойств. Раздражимость проявляется в изменениях текущих значений физиологических параметров, величина которых превышает их сдви­ги при покое. Раздражимость является универсальным проявлением жизнедеятельности всех  без исключения  биологических  систем.

Возбудимость

Когда изменения внешней среды начинают превышать известный индивидуальный уровень, активное состояние некоторых тканей и клеток может сопровождаться проявлением специфической функции данной живой системы — возбудимостью. Возбудимостью называется способность организма, органа, ткани или клетки отвечать на раздражение активной специфической реакцией — возбуждением (генерацией нервного импульса, сокращением, секре­цией и др.).

Раздражимость и возбудимость характеризуют в сущности одно и то же свойство биологической системы — способность отвечать на внеш­ние воздействия. Однако термин возбудимость используется для оп­ределения специфических реакций, имеющих более позднее филогене­тическое происхождение. Возбудимость является, следовательно, вы­сшим проявлением более  общего  свойства раздражимости тканей.

2.Строение мембраны нервной клетки

Мембрана нейрона, как и любой другой клетки, устроена очень сложно. В своей основе все известные биологические мембраны имеют однообразное строение (рис. 2.5): слой молекул белка, затем слой молекул липидов и еще один слой молекул белка. Вся эта конструкция напоминает два бутерброда, сложенных маслом друг к другу. Толщина такой мембраны составляет 7 - 11 нм. Чтобы представить эти размеры, вообразите, что толщина вашего волоса уменьшилась в 10 тыс. раз. В такую мембрану встроены разнообразные частицы. Одни из них являются частицами белка и пронизывают мембрану насквозь (интегральные белки), они образуют места прохождения для ряда ионов: натрия, калия, кальция, хлора. Это так называемые ионные каналы. Другие частицы прикреплены на внешней поверхности мембраны и состоят не только из молекул белка, но и из полисахаридов. Это рецепторы для молекул биологически активных веществ, например медиаторов, гормонов и др. Часто в состав рецептора, кроме места для связывания специфической молекулы, входит и ионный канал.

3.Механизмы и структуры пассивного транспорта.

Пассивный перенос веществ через клеточные мембраны не тре­бует затраты энергии метаболизма. Активный транспорт осуществля­ется транспортнымиаденозинтрифосфатазами (АТФазами) и проис­ходит за счет энергии гидролиза АТФ.

Схематически основные виды транспорта веществ через мембрану клеток представлены на рис.1.12

 Рис.1.12 Виды пассивного и активного транспорта веществ через мембрану.

1,2 — простая диффузия через бислой и ионный канал, 3 — облегченная диффузия, 4 — первично-активный транспорт, 5 — вторично-активный транспорт.

2.1. Простая диффузия

Диффузия представляет собой процесс, при помощи которого газ или растворенные вещества распространяются и  заполняют весь доступный  объем.

Молекулы и ионы, растворенные в жидкости, находятся в хаоти­ческом движении, сталкиваясь друг с другом, молекулами раствори­теля и клеточной мембраной. Столкновение молекулы или иона с мембраной может иметь двоякий исход: молекула либо «отскочит» от мембраны, либо пройдет через нее. Когда вероятность последнего события высока, то говорят, что мембрана проницаема для данного вещества.

Если концентрация вещества по обе стороны мембраны различна, возникает поток частиц, направленный из более концентрированно­го раствора в разбавленный. Диффузия происходит до тех пор, пока концентрация вещества по обе стороны мембраны не выравнивается. Через клеточную мембрану проходят как хорошо растворимые в воде {гидрофильные) вещества, так и гидрофобные, плохо или совсем в  ней нерастворимые.

Гидрофобные, хорошо растворимые в жирах вещества, диффунди­руют благодаря растворению в липидах мембраны. Вода и вещества хорошо в ней растворимые проникают через временные дефекты углеводородной области мембраны, т.н. кинки, а также через поры, постоянно  существующие  гидрофильные  участки  мембраны.

В случае, когда клеточная мембрана непроницаема или плохо про­ницаема для растворенного вещества, но проницаема для воды, она подвергается действию осмотических сил. При более низкой кон­центрации вещества в клетке, чем в окружающей среде, клетка сжи­мается; если концентрация растворенного вещества в клетке выше, вода устремляется внутрь клетки. 2.2. Осмос

Осмос — движение молекул воды (растворителя) через мембрану из области меньшей в область большей концентрации растворенного вещества. Осмотическим давлением называется то наименьшее дав­ление, которое необходимо приложить к раствору для того, чтобы предотвратить перетекание растворителя через мембрану в раствор с большей концентрацией вещества.

Молекулы растворителя, как и молекулы любого другого вещества, приводятся в движение силой, возникающей вследствие разности химических потенциалов. Когда какое-либо вещество растворяется, химический потенциал растворителя уменьшается. Поэтому в облас­ти, где концентрация растворенного вещества выше, химический по­тенциал растворителя ниже. Таким образом, молекулы растворителя, перемещаясь из раствора с меньшей в раствор с большей концент­рацией, движутся в термодинамическом смысле «вниз», «по гради­енту».

Объем клеток в значительной степени регулируется количеством содержащейся в них воды. Клетка никогда не находится в состо­янии полного равновесия с окружающей средой. Непрерывное дви­жение молекул и ионов через плазматическую мембрану изменяет концентрацию   веществ   в   клетке   и,   соответственно,   осмотическое

давление ее содержимого. Если клетка секретирует какое-либо ве­щество, то для поддержания неизменной величины осмотического давления она должна либо выделять соответствующее количество воды, либо поглощать эквивалентное количество иного вещества. Поскольку среда, окружающая большинство клеток гипотонична, для клеток важно предотвратить поступление в них больших количеств воды. Поддержание же постоянства объема даже в изотонической среде требует расхода энергии, поэтому в клетке концентрация ве­ществ неспособных к диффузии (белков, нуклеиновых кислот и т.д.) выше, чем в околоклеточной среде. Кроме того, в клетке постоянно накапливаются метаболиты, что нарушает осмотическое равновесие. Необходимость расходования энергии для поддержания постоянства объема легко доказывается в экспериментах с охлаждением или ингибиторами метаболизма. В таких условиях клетки быстро набу­хают.

Для решения «осмотической проблемы» клетки используют два способа: они откачивают в интерстиций компоненты своего содер­жимого или поступающую в них воду. В большинстве случаев клет­ки используют первую возможность — откачку веществ, чаше ионов, используя для этого  натриевый  насос (см.ниже).

В целом объем клеток, не имеющих жестких стенок, определяется тремя факторами:

а) количеством содержащихся в них и неспособ­ных к проникновению через мембрану веществ;

б) концентрацией в интерстиций соединений, способных проходить через мембрану;

в) соотношением скоростей проникновения и откачки веществ из клетки.

Большую роль в регуляции водного баланса между клеткой и окружающей средой играет эластичность плазматической мембраны, создающей гидростатическое давление, препятствующее поступлению воды в клетку. При наличии разности гидростатических давлений в двух областях среды вода может фильтроваться через поры барьера, разделяющего  эти  области.

Явления фильтрации лежат в основе многих физиологических про­цессов, таких, например, как образование первичной мочи в нефроне, обмен  воды  между кровью и тканевой жидкостью  в капиллярах. 2.3. Диффузия ионов

Диффузия ионов происходит, в основном, через специализированные белковые структуры мембраны — ионные ка­налы, когда они находятся в открытом состоянии. В зависимости от вида ткани клетки могут иметь различный набор ионных каналов. Различают натриевые, калиевые, кальциевые, натрий-кальциевые и хлорные каналы. Перенос ионов по каналам имеет ряд особеннос­тей, отличающих его от простой диффузии. В наибольшей степени это касается кальциевых  каналов.

Ионные каналы могут находиться в открытом, закрытом и инак-тивированном состояниях. Переход канала из одного состояния в другое управляется или изменением электрической разности потен­циалов на мембране, или взаимодействием физиологически активных веществ с рецепторами. Соответственно, ионные каналы подразде­ляют  на   потенциал-зависимые   и  рецептор-управляемые.   Избирательная проницаемость ионного канала для конкретного иона опре­деляется наличием специальных селективных фильтров в  его  устье. 2.4. Облегченная диффузия

Через биологические мембраны кроме воды и ионов путем простой диффузии проникают многие вещества (от этанола до сложных лекарственных препаратов). В то же время даже сранительно небольшие полярные молекулы, например, гликоли, мо­носахариды и аминокислоты практически не проникают через мем­брану большинства клеток за счет простой диффузии. Их перенос осуществляется путем облегченной диффузии. Облегченной называется диффузия вещества по градиенту его концентрации, которая осущест­вляется при участии особых белковых  молекул-переносчиков.

Транспорт Na+, K+, Сl-, Li+, Ca2+, НСО3- и Н+ могут также осуществлять специфические переносчики. Характерными чертами этого вида мембранного транспорта являются высокая по сравнению с простой диффузией скорость переноса вещества, зависимость от строения его молекул, насыщаемость, конкуренция и чувствитель­ность к специфическим ингибиторам — соединениям, угнетающим облегченную диффузию.

Все перечисленные черты облегченной диффузии являются резуль­татом специфичности белков-переносчиков и ограниченным их ко­личеством в мембране. При достижении определенной концентрации переносимого вещества, когда все переносчики заняты транспорти­руемыми молекулами или ионами, дальнейшее ее увеличение не при­ведет к возрастанию числа переносимых частиц — явление насыщения. Вещества, сходные по строению молекул и транспортируемые одним и тем же переносчиком, будут конкурировать запереносчик — явление  конкуренции. 

Различают несколько видов транспорта веществ посредством облегченной диффузии (рис. 1.13):

Рис. 1.13 Классификация способов переноса через мембрану.

Унипорт, когда молекулы или ионы переносятся через мебрану независимо от наличия или переноса других соединений (тран­спорт глюкозы, амино­кислот через базальную мембрану эпителиоцитов);

Симпорт, при котором их перенос осуществляется одновременно и однонаправленно с другими со­единениями (натрий- за­висимый транспорт Сахаров и аминокислот Na+ K+, 2Cl- и котран-спорт);

Антипорт — (транспорт вещества обусловлен одновремен­ным и противоложно направленным транспортом другого соедине­ния или иона (Na+/Ca2+, Na+/H+  Сl-/НСО3— обмены).

Симпорт и антипорт — это виды котранспорта, при которых скорость пере­носа  контролируется  всеми  участниками  транспортного  процесса.

Природа белков-переносчиков неизвестна. По принципу действия они делятся на два типа. Переносчики первого типа совершают челночные движения через мембрану, а второго — встраиваются в мембрану, образуя канал. Промоделировать их действие можно с помощью антибиотиков-ионофоров, переносчиком щелочных метал­лов. Так, один из них — (валиномицин) — действует как истинный переносчик, переправляющий калий через мембрану. Молекулы же грамицидина А, другого ионофора, встаиваются в мембрану друг за другом,   формируя   «канал»  для  ионов  натрия.

Большинство клеток обладают системой облегченной диффузии. Однако перечень метаболитов, переносимых с помощью такого ме­ханизма, довольно ограничен. В основном, это сахара, аминокисло­ты и некоторые ионы. Соединения, являющиеся промежуточными продуктами обмена (фосфорилированные сахара, продукты метабо­лизма аминокислот, макроэрги), не транспортируются с помощью этой системы. Таким образом, облегченная диффузия служит для переноса тех молекул, которые клетка получает из окружающей среды. Исключением является транспорт органических молекул через эпителий,  который  будет рассмотрен  отдельно.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]