- •1. Информация о дисциплине
- •1.1. Предисловие
- •1.2. Содержание дисциплины и виды учебной работы
- •2. Рабочие учебные материалы
- •2.1. Рабочая программа
- •2.2. Тематический план дисциплины
- •2.3. Структурно-логическая схема дисциплины «Электротехника и электроника. Ч. 1»
- •2.6. Рейтинговая система оценки знаний
- •3. Информационные ресурсы дисциплины
- •3.1. Библиографический список
- •3.2. Опорный конспект
- •ВВЕДЕНИЕ
- •РАЗДЕЛ 1. Основы теории электрических цепей
- •1. Электрическая цепь и ее характеристики
- •1.1. Определение цепи
- •1.2. Графическое изображение электрической цепи и ее элементов
- •1.3. О направлениях действия ЭДС, токов и напряжений
- •1.4. Законы электрических цепей
- •1.5. Параметры электрических цепей
- •1.6. Идеальные элементы электрической цепи
- •2. Цепи постоянного тока
- •2.1. Некоторые особенности цепей постоянного тока
- •2.2. Закон Ома и законы Кирхгофа для цепей постоянного тока
- •2.3. Мощность цепи постоянного тока
- •2.4. Расчет простых цепей постоянного тока
- •2.6. Баланс мощностей цепи постоянного тока
- •3. Цепи синусоидального тока
- •3.1. Основные понятия о синусоидальных процессах
- •3.2. Аналитическая запись синусоидальных токов и напряжений
- •3.5. Закон Кирхгофа в векторной форме записи
- •3.7. Действующие значения синусоидальных токов и напряжений
- •3.8. Элементы в цепи синусоидального тока
- •3.10. Цепь с последовательным соединением R, L, C
- •3.11. Цепь с параллельным соединением R, L и C
- •3.14. Понятие о двухполюсниках и об эквивалентных цепях
- •РАЗДЕЛ 2. Методы расчета электрических цепей
- •4.1. Введение. Основы метода
- •4.2. Комплексные токи и напряжения
- •4.3. Комплексное сопротивление и комплексная проводимость
- •4.4. Комплексная мощность
- •4.5. Законы Кирхгофа в комплексной форме записи
- •4.6. Аналогия с цепями постоянного тока
- •5. Методы расчета сложных цепей синусоидального тока
- •5.1. Введение
- •5.2. Метод контурных токов
- •5.3. Метод узловых напряжений (узловых потенциалов)
- •5.4. Метод эквивалентного источника
- •5.5. Метод наложения
- •5.6. Баланс мощностей цепи синусоидального тока
- •РАЗДЕЛ 3. Резонанс, индуктивно связанные цепи и трехфазные цепи
- •6. Резонансные явления. Индуктивно связанные цепи
- •6.1. Резонансные явления
- •6.3. Резонанс в параллельной цепи из элементов R, L,C (резонанс токов)
- •6.5. Цепь с трансформаторной связью между катушками
- •7. Трехфазные электрические цепи
- •7.1. Введение
- •7.2. Соединение трехфазной цепи звездой
- •7.3. Соединение трехфазной цепи треугольником
- •7.4. Расчет трехфазных цепей
- •7.5. Мощность трехфазной цепи
- •РАЗДЕЛ 4 Несинусоидальные токи, напряжения и переходные процессы
- •8.1. Общие положения
- •8.4. Мощность в цепи при несинусоидальных токе и напряжении
- •8.5. Расчет линейных цепей с несинусоидальными ЭДС
- •9.1. Общие положения
- •9.2. Законы коммутации. Начальные условия
- •РАЗДЕЛ 5. Нелинейные электрические и магнитные цепи
- •10. Нелинейные электрические и магнитные цепи постоянного тока
- •10.1. Нелинейные электрические цепи. Общие положения
- •10.2. Нелинейные сопротивления
- •10.3. Нелинейные свойства ферромагнитных материалов
- •10.4. Нелинейная индуктивность
- •10.5. Нелинейная емкость
- •10.6. Нелинейные электрические цепи постоянного тока
- •10.8. Магнитные цепи с постоянным магнитным потоком
- •11. Нелинейные цепи переменного тока
- •РАЗДЕЛ 6. Электрические машины
- •12. Трансформаторы
- •12.1. Назначение и принцип действия
- •12.2. Холостой ход трансформатора
- •12.3. Нагрузка трансформатора
- •12.4. Схема замещения
- •12.5. Режим холостого хода
- •12.6. Режим короткого замыкания
- •12.7. Внешняя характеристика трансформатора
- •12.8. КПД трансформатора
- •13. АСИНХРОННЫЕ МАШИНЫ
- •13.1. Общие вопросы теории электрических машин
- •13.2. Классификация электрических машин
- •13.4. Скольжение и его влияние на параметры ротора
- •13.5. Механическая мощность асинхронного двигателя
- •13.9. Пуск асинхронных двигателей
- •14. Cинхронные машины
- •14.1. Устройство и принцип действия
- •14.2. Характеристика холостого хода
- •14.3. Внешние характеристики синхронного генератора
- •14.4. Включение синхронного генератора на параллельную работу
- •14.5. Пуск в ход синхронных двигателей
- •14.6. Синхронные компенсаторы
- •15. Машины постоянного тока
- •15.1. Конструктивные особенности машин постоянного тока
- •15.2. Классификация по способу возбуждения
- •15.3. Генераторы постоянного тока
- •15.4. Двигатели постоянного тока
- •15.5. Пуск двигателей постоянного тока
- •15.7. Пример решения задачи
- •РАЗДЕЛ 7. Электрические измерения и приборы
- •16. Электрические измерения и приборы
- •16.1. Общие сведения об электрических измерениях
- •16.2. Эталоны единиц электрических величин
- •16.3. Измерительные приборы
- •16.4. Измерение напряжения переменного тока
- •ЗАКЛЮЧЕНИЕ
- •ГЛОССАРИЙ
- •3.4. Лабораторные работы
- •Общие указания
- •3.5. Практические занятия
- •Общие указания
- •4. БЛОК КОНТРОЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ
- •Общие указания
- •ЗАДАЧА 1
- •ЗАДАЧА 2
- •ЗАДАЧА 3
- •ЗАДАЧА 4
- •ЗАДАЧА 5
- •ЗАДАЧА 6
- •ЗАДАЧА 7
- •ЗАДАЧА 8
- •ЗАДАЧА 9
- •4.2. Текущий контроль (вопросы для самопроверки, тестовые задания)
- •Тема 1. Репетиционный тест 1
- •Тема 1. Тест 1
- •Тема 2. Репетиционный тест 2
- •Тема 2. Тест 2
- •Тема 3. Репетиционный тест 3
- •Тема 3. Тест 3
- •Тема 4. Репетиционный тест 4
- •Тема 4. Тест 4
- •Тема 5. Репетиционный тест 5
- •Тема 5. Тест 5
- •Тема 6. Тест 6
- •Тема 7. Репетиционный тест 7
- •Тема 7. Тест 3.7
- •Тема 8. Тест 8.
- •Тема 9. Тест 9
- •Тема 10. Репетиционный тест 10
- •Тема 10 Тест 10
- •Тема 11. Тест 11
- •Тема 12. Тест 12
- •Тема 13. Тест 13
- •Тема 14. Тест 14
- •Тема 15. Тест 15
- •Тема 16. Тест 16
Мост уравновешивается даже в случае «нечистого» источника питания (т. е. источника сигнала, содержащего гармоники основной частоты), если величина Lx не зависит от частоты.
Трансформаторный измерительный мост. Одно из преимуществ измеритель-
ных мостов переменного тока – простота задания точного отношения напряжений посредством трансформатора. В отличие от делителей напряжения, построенных из резисторов, конденсаторов или катушек индуктивности, трансформаторы в течение длительного времени сохраняют постоянным установленное отношение напряжений и редко требуют повторной калибровки.
К недостаткам трансформаторного измерительного моста можно отнести то, что отношение, задаваемое трансформатором, в какой-то степени зависит от частоты сигнала. Это приводит к необходимости проектировать трансформаторные измерительные мосты лишь для ограниченных частотных диапазонов, в которых гарантируется паспортная точность.
Заземление и экранирование. Измерительные мосты необходимо тщательно заземлять и экранировать, чтобы паразитные емкости между разными частями схемы моста не вносили ошибку уравновешивания.
Типичные нуль-детекторы. В измерительных мостах переменного тока чаще всего применяются нуль-детекторы двух типов. Нуль-детектор одного из них представляет собой резонансный усилитель с аналоговым выходным прибором, показывающим уровень сигнала. Нуль-детектор другого типа – это фазочувствительный детектор, который разделяет сигнал разбаланса на активную и реактивную составляющие и пригоден в тех случаях, когда требуется точно уравновешивать только одну из неизвестных составляющих (скажем, индуктивность L, но не сопротивление R катушки индуктивности).
16.4.Измерение напряжения переменного тока
Вслучае изменяющихся во времени сигналов переменного тока обычно требуется измерять некоторые их характеристики, связанные с мгновенными значениями сигнала.
Чаще всего желательно знать среднеквадратические (действующие) значения электрических величин переменного тока, поскольку мощности нагревания при напряжении 1 В постоянного тока соответствует мощность нагревания при напряжении 1 В действующего значения.
Наряду с этим могут представлять интерес и другие величины, например максимальное или среднее абсолютное значение. Среднеквадратическое (дей-
217
ствующее) значение напряжения или переменного тока определяется как корень квадратный из усредненного по времени квадрата напряжения (или тока):
|
1 |
t |
|
1 |
t |
|
U |
2 u2 (t)dt , |
I |
2 i2 (t)dt , |
|||
|
|
|||||
|
T t |
|
T t |
|||
|
|
1 |
|
|
1 |
где Т – период напряжения (тока). При синусоидальной форме колебаний U = 0,707U m, где U m – амплитуда (максимальное значение) напряжения аналогично для тока.
Измерение переменного напряжения и тока. Почти все приборы для измерения напряжения и тока показывают значение, которое предлагается рассматривать как действующее значение входного сигнала. Однако в дешевых приборах зачастую на самом деле измеряется среднее абсолютное или максимальное значение сигнала, а шкала градуируется так, чтобы показание соответствовало эквивалентному действующему значению в предположении, что входной сигнал имеет синусоидальную форму. Не следует упускать из виду, что точность таких приборов крайне низка, если сигнал несинусоидален. Приборы, способные измерять истинное действующее значение сигналов переменного тока, могут быть основаны на одном из трех принципов: электронного умножения, дискретизации сигнала или теплового преобразования. Приборы, основанные на первых двух принципах, как правило, реагируют на напряжение, а тепловые электроизмерительные приборы – на ток. При использовании добавочных и шунтовых резисторов всеми приборами можно измерять как ток, так и напряжение.
Электронное умножение. Возведение в квадрат и усреднение по времени входного сигнала в некотором приближении осуществляются электронными схемами с усилителями и нелинейными элементами для выполнения таких математических операций, как нахождение логарифма и антилогарифма аналоговых сигналов. Приборы такого типа могут иметь погрешность порядка всего лишь 0,009 %.
Дискретизация сигнала. Сигнал переменного тока преобразуется в цифровую форму с помощью быстродействующего АЦП. Дискретизированные значения сигнала возводятся в квадрат, суммируются и делятся на число дискретных значений в одном периоде сигнала. Погрешность таких приборов со-
ставляет 0,01–0,1 %.
Тепловые электроизмерительные приборы. Наивысшую точность измере-
ния действующих значений напряжения и тока обеспечивают тепловые элек-
218
троизмерительные приборы. В них используется тепловой преобразователь тока в виде небольшого откачанного стеклянного баллончика с нагревательной проволочкой (длиной 0,5–1 см), к средней части которой крохотной бусинкой прикреплен горячий спай термопары. Бусинка обеспечивает тепловой контакт и одновременно электроизоляцию. При повышении температуры, прямо связанном с действующим значением тока в нагревательной проволочке, на выходе термопары возникает термоЭДС (напряжение постоянного тока). Такие преобразователи пригодны для измерения переменного тока с частотой от 20 Гц до
10МГц.
Спомощью добавочного резистора описанный измеритель тока можно превратить в вольтметр. Поскольку тепловые электроизмерительные приборы непосредственно измеряют токи лишь от 2 до 500 мА, для измерения токов большей силы необходимы резисторные шунты.
Измерение мощности и энергии переменного тока. Мощность, потреб-
ляемая нагрузкой в цепи переменного тока, равна среднему по времени произведению мгновенных значений напряжения и тока нагрузки. Если напряжение и ток изменяются синусоидально (как это обычно и бывает), то мощность Р можно представить в виде P = UI cosφ, где U и I – действующие значения напряжения и тока, а φ – фазовый угол (угол сдвига) синусоид напряжения и тока.
Если напряжение выражается в вольтах, а ток в амперах, то мощность будет выражена в ваттах. Множитель cosφ, называемый коэффициентом мощности, характеризует степень синхронности колебаний напряжения и тока.
Сэкономической точки зрения, самая важная электрическая величина – энергия. Энергия W определяется произведением мощности на время ее потребления. В математической форме это записывается так:
t2
W uidt.
t1
Если время (t1 - t2) измеряется в секундах, напряжение u – в вольтах, а ток i – в амперах, то энергия W будет выражена в ватт-секундах, т.е. джоулях (1 Дж = 1 Вт.с). Если же время измеряется в часах, то энергия – в ватт-часах. На практике электроэнергию удобнее выражать в киловатт-часах (1 кВт.ч = 1000 Вт.ч).
Счетчики электроэнергии с разделением времени. В счетчиках электро-
энергии с разделением времени используется весьма своеобразный, но точный метод измерения электрической мощности. Такой прибор имеет два канала. Один канал представляет собой электронный ключ, который пропускает или не пропускает входной сигнал Y (или обращенный входной сигнал -Y) на фильтр
219
нижних частот. Состоянием ключа управляет выходной сигнал второго канала с отношением временных интервалов «закрыто»/«открыто», пропорциональным его входному сигналу. Средний сигнал на выходе фильтра равен среднему по времени произведению двух входных сигналов. Если один входной сигнал пропорционален напряжению на нагрузке, а другой – току нагрузки, то выходное напряжение пропорционально мощности, потребляемой нагрузкой. Погрешность таких счетчиков промышленного изготовления составляет 0,02% на частотах до 3 кГц (лабораторных – порядка всего лишь 0,0001% при 60 Гц). Как приборы высокой точности они применяются в качестве образцовых счетчиков для поверки рабочих средств измерения.
Дискретизирующие ваттметры и счетчики электроэнергии. Такие приборы основаны на принципе цифрового вольтметра, но имеют два входных канала, дискретизирующих параллельно сигналы тока и напряжения. Каждое дискретное значение u(k), представляющее мгновенные значения напряжения в момент дискретизации, умножается на соответствующее дискретное значение i(k) тока, полученное в тот же момент времени. Среднее по времени таких произведений есть мощность в ваттах:
P1 k n u(k)i(k). n k 1
Сумматор, накапливающий произведения дискретных значений с течением времени, дает полную электроэнергию в ватт-часах. Погрешность счетчиков электроэнергии может составлять всего лишь 0,01 %.
Индукционные счетчики электроэнергии. Индукционный счетчик пред-
ставляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками – токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности. Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности. Число оборотов диска за то или иное время пропорционально полной электроэнергии, полученной за это время потребителем. Число оборотов диска считает механический счетчик, который показывает электроэнергию в киловатт-часах. Приборы такого типа широко применяются в качестве бытовых счетчиков электроэнергии. Их погрешность, как правило, составляет 0,5 %; они отличаются большим сроком службы при любых допустимых уровнях тока.
220