- •1. Информация о дисциплине
- •1.1. Предисловие
- •1.2. Содержание дисциплины и виды учебной работы
- •2. Рабочие учебные материалы
- •2.1. Рабочая программа
- •2.2. Тематический план дисциплины
- •2.3. Структурно-логическая схема дисциплины «Электротехника и электроника. Ч. 1»
- •2.6. Рейтинговая система оценки знаний
- •3. Информационные ресурсы дисциплины
- •3.1. Библиографический список
- •3.2. Опорный конспект
- •ВВЕДЕНИЕ
- •РАЗДЕЛ 1. Основы теории электрических цепей
- •1. Электрическая цепь и ее характеристики
- •1.1. Определение цепи
- •1.2. Графическое изображение электрической цепи и ее элементов
- •1.3. О направлениях действия ЭДС, токов и напряжений
- •1.4. Законы электрических цепей
- •1.5. Параметры электрических цепей
- •1.6. Идеальные элементы электрической цепи
- •2. Цепи постоянного тока
- •2.1. Некоторые особенности цепей постоянного тока
- •2.2. Закон Ома и законы Кирхгофа для цепей постоянного тока
- •2.3. Мощность цепи постоянного тока
- •2.4. Расчет простых цепей постоянного тока
- •2.6. Баланс мощностей цепи постоянного тока
- •3. Цепи синусоидального тока
- •3.1. Основные понятия о синусоидальных процессах
- •3.2. Аналитическая запись синусоидальных токов и напряжений
- •3.5. Закон Кирхгофа в векторной форме записи
- •3.7. Действующие значения синусоидальных токов и напряжений
- •3.8. Элементы в цепи синусоидального тока
- •3.10. Цепь с последовательным соединением R, L, C
- •3.11. Цепь с параллельным соединением R, L и C
- •3.14. Понятие о двухполюсниках и об эквивалентных цепях
- •РАЗДЕЛ 2. Методы расчета электрических цепей
- •4.1. Введение. Основы метода
- •4.2. Комплексные токи и напряжения
- •4.3. Комплексное сопротивление и комплексная проводимость
- •4.4. Комплексная мощность
- •4.5. Законы Кирхгофа в комплексной форме записи
- •4.6. Аналогия с цепями постоянного тока
- •5. Методы расчета сложных цепей синусоидального тока
- •5.1. Введение
- •5.2. Метод контурных токов
- •5.3. Метод узловых напряжений (узловых потенциалов)
- •5.4. Метод эквивалентного источника
- •5.5. Метод наложения
- •5.6. Баланс мощностей цепи синусоидального тока
- •РАЗДЕЛ 3. Резонанс, индуктивно связанные цепи и трехфазные цепи
- •6. Резонансные явления. Индуктивно связанные цепи
- •6.1. Резонансные явления
- •6.3. Резонанс в параллельной цепи из элементов R, L,C (резонанс токов)
- •6.5. Цепь с трансформаторной связью между катушками
- •7. Трехфазные электрические цепи
- •7.1. Введение
- •7.2. Соединение трехфазной цепи звездой
- •7.3. Соединение трехфазной цепи треугольником
- •7.4. Расчет трехфазных цепей
- •7.5. Мощность трехфазной цепи
- •РАЗДЕЛ 4 Несинусоидальные токи, напряжения и переходные процессы
- •8.1. Общие положения
- •8.4. Мощность в цепи при несинусоидальных токе и напряжении
- •8.5. Расчет линейных цепей с несинусоидальными ЭДС
- •9.1. Общие положения
- •9.2. Законы коммутации. Начальные условия
- •РАЗДЕЛ 5. Нелинейные электрические и магнитные цепи
- •10. Нелинейные электрические и магнитные цепи постоянного тока
- •10.1. Нелинейные электрические цепи. Общие положения
- •10.2. Нелинейные сопротивления
- •10.3. Нелинейные свойства ферромагнитных материалов
- •10.4. Нелинейная индуктивность
- •10.5. Нелинейная емкость
- •10.6. Нелинейные электрические цепи постоянного тока
- •10.8. Магнитные цепи с постоянным магнитным потоком
- •11. Нелинейные цепи переменного тока
- •РАЗДЕЛ 6. Электрические машины
- •12. Трансформаторы
- •12.1. Назначение и принцип действия
- •12.2. Холостой ход трансформатора
- •12.3. Нагрузка трансформатора
- •12.4. Схема замещения
- •12.5. Режим холостого хода
- •12.6. Режим короткого замыкания
- •12.7. Внешняя характеристика трансформатора
- •12.8. КПД трансформатора
- •13. АСИНХРОННЫЕ МАШИНЫ
- •13.1. Общие вопросы теории электрических машин
- •13.2. Классификация электрических машин
- •13.4. Скольжение и его влияние на параметры ротора
- •13.5. Механическая мощность асинхронного двигателя
- •13.9. Пуск асинхронных двигателей
- •14. Cинхронные машины
- •14.1. Устройство и принцип действия
- •14.2. Характеристика холостого хода
- •14.3. Внешние характеристики синхронного генератора
- •14.4. Включение синхронного генератора на параллельную работу
- •14.5. Пуск в ход синхронных двигателей
- •14.6. Синхронные компенсаторы
- •15. Машины постоянного тока
- •15.1. Конструктивные особенности машин постоянного тока
- •15.2. Классификация по способу возбуждения
- •15.3. Генераторы постоянного тока
- •15.4. Двигатели постоянного тока
- •15.5. Пуск двигателей постоянного тока
- •15.7. Пример решения задачи
- •РАЗДЕЛ 7. Электрические измерения и приборы
- •16. Электрические измерения и приборы
- •16.1. Общие сведения об электрических измерениях
- •16.2. Эталоны единиц электрических величин
- •16.3. Измерительные приборы
- •16.4. Измерение напряжения переменного тока
- •ЗАКЛЮЧЕНИЕ
- •ГЛОССАРИЙ
- •3.4. Лабораторные работы
- •Общие указания
- •3.5. Практические занятия
- •Общие указания
- •4. БЛОК КОНТРОЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ
- •Общие указания
- •ЗАДАЧА 1
- •ЗАДАЧА 2
- •ЗАДАЧА 3
- •ЗАДАЧА 4
- •ЗАДАЧА 5
- •ЗАДАЧА 6
- •ЗАДАЧА 7
- •ЗАДАЧА 8
- •ЗАДАЧА 9
- •4.2. Текущий контроль (вопросы для самопроверки, тестовые задания)
- •Тема 1. Репетиционный тест 1
- •Тема 1. Тест 1
- •Тема 2. Репетиционный тест 2
- •Тема 2. Тест 2
- •Тема 3. Репетиционный тест 3
- •Тема 3. Тест 3
- •Тема 4. Репетиционный тест 4
- •Тема 4. Тест 4
- •Тема 5. Репетиционный тест 5
- •Тема 5. Тест 5
- •Тема 6. Тест 6
- •Тема 7. Репетиционный тест 7
- •Тема 7. Тест 3.7
- •Тема 8. Тест 8.
- •Тема 9. Тест 9
- •Тема 10. Репетиционный тест 10
- •Тема 10 Тест 10
- •Тема 11. Тест 11
- •Тема 12. Тест 12
- •Тема 13. Тест 13
- •Тема 14. Тест 14
- •Тема 15. Тест 15
- •Тема 16. Тест 16
Затем обмотка возбуждения отключается от сопротивления и подключается к источнику постоянного тока. В результате возникает обычный для синхронной машины момент взаимодействия вращающего поля якоря и полюсов ротора и машина втягивается в синхронизм, т.е. начинает вращаться синхронно
сполем. При вращении ротора с синхронной скоростью, т.е. при отсутствии скольжения, в пусковой клетке не возникают токи, и в дальнейшей работе машины клетка не участвует.
Синхронные двигатели конструктивно сложнее асинхронных двигателей
скороткозамкнутым ротором, так как имеют значительно более сложную конструкцию ротора. Для синхронных двигателей требуется источник постоянного напряжения. Пуск синхронных двигателей значительно сложнее, чем асинхронных.
Достоинством синхронного двигателя является то, что его максимальный момент зависит от напряжения в сети в первой степени, а не во второй, как для асинхронного двигателя. Это означает, что в обычных условиях при колебаниях напряжения сети момент синхронного двигателя является более стабильным. Кроме этого, синхронные двигатели могут работать с любым коэффициентом мощности, который можно изменять независимо от нагрузки на валу двигателя, регулируя ток возбуждения.
Сопоставление достоинств и недостатков синхронных двигателей показывает, что их целесообразно применять для установок большой мощности, начиная примерно с 50 – 100 кВт, в особенности для установок, работающих в условиях редких пусков.
14.6. Синхронные компенсаторы
Способность синхронной машины вызывать в сети опережающий ток и служить генератором реактивной мощности находит широкое применение.
Создают специальные синхронные двигатели, работающие на холостом ходу, генерирующие реактивную мощность и повышающие cosφ сети. Такие машины называются синхронными компенсаторами. Они работают в режиме перевозбуждения, вызывая ток, опережающий напряжение сети на угол, близкий к π / 2. Тем самым компенсируется реактивная составляющая тока других потребителей и, как следствие, уменьшается результирующий ток, нагружающий электрическую сеть.
Потери мощности синхронных компенсаторов невелико и не превышает 2 – 3 % их номинальной мощности. По сравнению с конденсаторами, которые
194