Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
606575.rtf
Скачиваний:
13
Добавлен:
30.03.2015
Размер:
10.62 Mб
Скачать

40. Оценка генеральной средней по выборочной средней

Случайная выборка из генеральной совокупности

Чтобы по выборке можно было делать выводы о свойствах всей генеральной совокупности, она должна быть представительной (репрезентативной). Это обеспечивается в тех ситуациях, когда выборка является случайной. Модель случайной выборки предъявляет к ней следующие требования:

1) каждый из объектов, составляющих генеральную совокупность, должен иметь одинаковую вероятность быть представленным в выборке;

2) все n измерений, образующих выборку, должны быть независимыми, т. е. результаты каждого измерения не должны зависеть от предыдущих измерений.

Существует два основных метода отбора объектов из генеральной совокупности в выборку: повторный и бесповторный.

При повторном отборе каждый объект после измерения значения признака возвращается в генеральную совокупность. При этом состояние генеральной совокупности перед каждым новым измерением восстанавливается и требование независимости всегда выполняется.

При бесповторном отборе после измерения объект не возвращается в генеральную совокупность. В этом случае соотношение значений признака в оставшейся части генеральной совокупности меняется, и, следовательно, проводимые измерения не являются независимыми, т. е. бесповоротный отбор не является случайным. На практике бесповоротный отбор используется чаще. Когда проводится измерение каких-то признаков, относящихся, например, к преступникам, выборка составляется таким образом, что после того, как очередной человек принял участие в измерениях, он уже не участвует в следующих измерениях.

Но, как правило, можно считать, что объем генеральной совокупности настолько велик, что при исключении из нее относительно малого числа единиц, составляющих выборку, состояние генеральной совокупности практически не меняется. При бесконечной генеральной совокупности различие между повторным и бесповторным отбором исчезает.

На практике используется несколько способов получения случайных выборок:

1. собственно случайная,

2. механический отбор.

3. типический отбор.

4. серийный отбор.

При проведении выборочных исследований предполагается, что выборка является однородной. Это означает, что она получена из одной генеральной совокупности, т. е. в исходной совокупности отсутствуют объекты, резко выделяющиеся по значениям изучаемого признака. Предположение об однородности выборки на практике обычно основывается на предварительном изучении условий эксперимента. Так, обычно есть уверенность в том, что полученные выборочные данные о количестве правонарушений представляют собой результаты измерений для одинаковых по численности городов.

41. Оценка генеральной дисперсии по исправленной выборочной дисперсии

Получим несмещенную оценку для генеральной дисперсии : Def: Статистику называют исправленной выборочной дисперсией.

Очевидно, что - несмещенная и состоятельная оценка для параметра :

Проверим несмещенность:

Замечание: так как при , то на практике для оценки применяют (3’) ввиду ее удобства.

В качестве оценок для среднего квадратичного отклонения берут статистики и .Можно показать, что это – состоятельные оценки: но обе оценки будут смещенными:

Интервальные оценки неизвестных параметров распределения.

1) Интервальная оценка и ее надежность.

Рассмотрим выборку . Совокупность независимых случайных величин имеет тот же закон распределения, что и .

Пусть статистики такие, что всегда a<в, тогда (a,в)– случайный интервал.

– оцениваемый параметр.

Def: если случайный интервал (a,в)может покрывать неизвестный параметр , то этот интервал называется интервальной оценкой для параметра .

Пусть вероятность того, что параметр , тогда вероятность y называется надежностью или доверительной вероятностью интервальной оценки (a,в).

Естественно, что значения y берут близкими к единице. Обычно y берут 0.95, 0.99, 0.999.

С повышением надежности оценки увеличивается длина доверительного интервала.

2) Доверительный интервал для нормально распределенной случайной величины при известной дисперсии .

Рассмотрим случайную величину – известная величина. Требуется построить доверительный интервал . Для решения данной задачи рассмотрим статистику neX– выборочная средняя. Можно показать, что neXтакже подчинена нормальному закону.

Для нормального распределения случайной величины справедливо равенство:

– функция Лапласа.

Применим равенство (2) к выборочной средней:

Выберем E так, что бы заданная надежность оценки.

Из (3) имеем:

.

Итак, доверительный интервал для параметра a имеет вид:

Здесь t(y)выбирается из таблицы значений функций Лапласа:

3) Доверительный интервал для генеральной средней при неизвестной дисперсии .

Как и прежде

Рассмотрим статистику . Здесь – исправленная выборочная дисперсия. Доказано, что статистика имеет закон распределения с плотностью:

Bn– числа.

Распределение вероятностей, задаваемое плотностью (5) называют “t” – распределением или распределением Стьюдента с (n-1) степенью свободы.

Функция (5) является четной.

При “t” – распределение стремится к нормальному распределению.

Что бы записать доверительный интервал для генеральной средней, рассмотрим равенство:

Пользуясь таблицами t” – распределения по заданной надежности и числу степеней свободы (n-1), выбираем t(y,n) из условия (6):

В результате с надежностью y в силу (6) выполняется двойное неравенство:

Отсюда выражаем “a”:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]