Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
95
Добавлен:
29.03.2015
Размер:
6.71 Mб
Скачать

В. Внезапное короткое замыкание при ,.

В данном случае все предыдущие рассуждения относятся и сюда, рис. 299, да плюс еще явления от потока (потокосцепления), который в начальный момент равен максимуму. Так как обмотку статора будем считать сверхпроводящим контуром, то этот поток сцепленный с обмоткой статора должен быть постоянным, при вращении индуктора, а для достижения этого необходимо постоянный ток. Отсюда в статоре, кроме апериодической составляющей тока короткого замыкания, появится постоянный ток.

Рис. 299

Этот ток (постоянная составляющая), будет затухать с постоянной времени . Для получения полной картины тока короткого замыкания нужно сложить кривую симметричной составляющей тока внезапного короткого замыкания с кривой апериодической составляющей – постоянного тока короткого замыкания.

Природа этой апериодической составляющей таже, что и у трансформатора, рис. 300.

В момент короткого замыкания начальная амплитуда симметричной составляющей '' проходит через максимум.

Рис. 300

Апериодическая составляющая в начальный момент равна сумме составляющих и противоположно направлена (по знаку ), т.к. при ,.

Результирующий ток внезапного короткого замыкания равен сумме этих двух токов. Здесь более тяжелая картина короткого замыкания.

В пределе ток внезапного короткого замыкании увеличивается в 2 раза. Как определить этот ток? Наша машина работает в режиме короткого замыкания. Ток все время меняется. А схема не меняется, направление и возбуждение также не меняется, а ток меняется. Отсюда вытекает, что меняются параметры цепи, т.е. сопротивления и прежде всего индуктивные сопротивления цепи, ибо активные сопротивления не играют большой роли.

Посмотрим, как меняются индуктивные сопротивления в процессе короткого замыкании, в сверхпереходный, переходный и установившийся режим. На рис. 301.

Рис. 301

Представлена картина потокосцепления в сверхпереходный период: т.к.обмотки успокоительная и возбуждения являются сверхпроводящими, то в них в первый момент наведется ЭДС, токи и потоки, которые ( при постоянстве потока) вытолкнут поток якоря '' из своих контуров, а следовательно и потокосцепление '' вынужденного пройти по путям рассеяния обмоток возбуждения и успокоительной. При этом магнитные проводимости будут малы, мало и индуктивное сопротивление в сверхпереходный момент '' , картина потокосцепления '' в этот момент, показана на рис…

Индуктивное сопротивление в сверхпереходный момент определиться по формуле , где,- индуктивные сопротивления обмоток возбуждения и успокоительной по путям рассеяния.

Схема замещения этого сопротивления представлена на рис. 302.

Затем по мере затухания потока в успокоительной обмотке поток якоря будет проходить по контуру этой обмотки, но огибать обмотку возбуждения ( показано пунктирными линиями).

Рис. 302

Этот режим называется переходным, сопротивление, соответствующее этому режиму запишется , схема замещения для этого сопротивления представлена на рис. 303.

По мере затухания всплеска потока в обмотке возбуждения, поток якоря будет проходить по контуру обмотки возбуждения и успокоительной и поток якоря будет походить по тому же пути, что и поток обмотки возбуждения.

Рис. 303

Наступит установившийся режим короткого замыкания ( точечная линия вдоль индуктора).

Сопротивление и схема замещения представлена ниже,

рис. 304

.

Рис. 304

Зная соответствующие индуктивные сопротивления, можно определить токи внезапного короткого замыкания. Начальное действующее значение сверхпереходного тока короткого замыкания определится:

, где - начальное действующее значение симметричной составляющей тока короткого замыкания.

, , где,- начальные действующие значения переходной и установившейся симметричной составляющей тока короткого замыкания. При наличии апериодической составляющей полный ток будет равен сумме периодической и апериодической составляющих тока короткого замыкания. Как известно из теории переменного тока, начальное действующее значение тока внезапного короткого замыкания () получается в результате наложения на периодический ток с действующими значениями, апериодического токаи выражен формулой, так как при.

.

Таким образом, начальное действующее значение результирующего тока короткого замыкания превышает начальное действующее значение симметричной составляющей в раз, т.е..

Ударный мгновенный ток определится , где коэффициент 1,8 показывает, что ток за счет затухания апериодической составляющей уменьшится от двойного значения до 1,8, а1,05 – возможность работы при напряжении на 5% выше начального.

Амплитуда ударного тока может достигнуть 15-кратного значения амплитуды номинального тока. Большой ток может быть опасен для генератора по термическому и ударному действию.

5-9. Синхронные двигатели

В электроприводах, где не требуются частые пуски и регулирования скорости целесообразно применять синхронные двигатели вместо короткозамкнутых. При мощности выше 300 КВт, синхронные двигатели имеют по сравнению с асинхронными большое преимущество, заключающееся в том, что благодаря возбуждению постоянным током они могут работать с cosφ= 1 и не потребляют при этом реактивной мощности из сети, а при работе с перевозбуждением даже отдавать реактивную мощность в сеть. В результате улучшается коэффициент мощности сети и уменьшается падение напряжения и потери в ней. С другой стороны, конструкция синхронных двигателей сложнее, чем короткозамкнутых асинхронных двигателей, кроме того, синхронные двигатели должны иметь электромагнитный возбудитель для питания обмотки возбуждения постоянным током. Вследствие этого синхронные двигатели в большинстве случаев дороже асинхронных двигателей с короткозамкнутым ротором, однако, при мощности более 300 КВт они экономически выгодны при совместной работе с сетью. Пуск синхронных двигателей намного сложнее асинхронных.

5-9-1. Векторные диаграммы и угловые характеристики синхронного двигателя

При работе синхронной машины в режиме генератора напряжение на его зажимах равно разности между ЭДС Е0 и падениями напряжений на различных индуктивных сопротивлениях, а при работе в режиме двигателя напряжениеUс равно сумме ЭДС и падений напряжения на индуктивных сопротивлениях. Покажем векторную диаграмму для явнополюсного синхронного двигателя в перевозбужденном режиме при известных параметрахr,Xd,Xq.

При перевозбужденном режиме (рис. 305) ток опережает напряжение на угол φ. Ток якоряIразложим по осямd,qотносительно вектора Е0. ТокиId,Iqсоздают потоки, а они создают ЭДСEa= = -Ir, сумма ЭДС дает нам вектор напряженияUc. Уголθ– угол между вектором напряжения сетиUcи составляющей напряжения – Е0, которая уравновешивает ЭДС Е0.

На рис. 306 представлена упрощенная диаграмма синхронного двигателя для неявнополюсной машины.

В синхронном неявнополюсном двигателе ток по осям не разлагается. Синхронное индуктивное сопротивление Xc=Xd=Xs+Xad. Ток статора создает поток рассеяния и поток якоря. Оба этих потока создают ЭДС –jIXcотстающей от вектора тока на 900. Напряжение сетиUс уравновешивается суммой ЭДС ΣЕ=-Uc. Если из этой суммы вычесть ЭДС –jIXc, то получим вектор ЭДС Е0. ЭДС Е0и –jIXcуравновешиваются составляющими напряжения –Е0иjIXc. Уголθесть угол сдвига между вектором напряжения сетиUcи составляющей напряжения –Е0.