Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
95
Добавлен:
29.03.2015
Размер:
6.71 Mб
Скачать

2.2.3. Намагничивающая сила обмоток машин переменного тока

Рассмотрим в начале намагничивающую силу однофазной обмотки.

        1. Намагничивающая сила однофазной обмотки.

Намагничивающая сила однофазной обмотки представлена на рис. 100.

Рассмотрим в начале простой случай, 2-х полюсную обмотку однослойную 2Р = 2, Р = 1 с полным шагом у =  = q = 1, т.е. катушка и будет фаза. Намагничивающая сила катушки F = iWk, а на полюс Fk =1/2iWk. Так как любая магнитная силовая линия сцеплена с одним и тем током i и число витков W, то н.с. на полюсном делении будет в пространстве постоянной, т.е. в

Рис. 100

пространстве намагничивающая сила катушки имеет форму прямоугольника, а во времени изменяется по синусоидальному закону, т.к.

. Максимум

Первая пространственная гармоника ;

Амплитуда намагничивающей силы катушечной группы однослойной обмотки

Амплитуда намагничивающей силы катушечной группы двухслойной обмотки с укороченным шагом

Намагничивающая сила фазы для двухслойной обмотки

Чаще используют амплитуду н.с. на один полюс

или

Запишем закон изменения н.с. однофазной обмотки, рис. 101.

Рис. 101

Для оси фазы

Намагничивающая сила в любой точке пространства и в любой момент времени определится

, или

Это выражение пульсирующей волны намагничивающей силы фазы. Более удобно иметь дело с вращающейся намагничивающей силой, но с постоянной амплитудой. Заменим пульсирующую н.с. двумя бегущими волнами, используя тригонометрическую формулу

, отсюда

, тогда

Рис. 102 F F’’

- прямая волна, - обратная волна, рис. 102,

Представим графически, что пульсирующая волна равна сумме двух бегущих волн в разные стороны с постоянной амплитудой. Условием бегущей волны является постоянство аргумента при синусе, т.е. для прямой волны

, продифференцируем ,

, число оборотов , об/сек,

в минуту .

Для обратной волны ,.

Итак, пульсирующую н.с. фазы разложили на две бегущие волны, которые двигаются с постоянной амплитудой в разные стороны с синхронной скоростью.

3-2-3-2. Намагничивающая сила трехфазной обмотки.

Намагничивающая сила обмотки является базой для определения потока.

Запишем намагничивающие силы для трех фаз в виде пульсирующих волн, а затем разложим их на прямую и обратную волну, затем их сложим, то получим намагничивающую силу трехфазной обмотки

сложив прямые волны получим.

+0,

сумма обратных волн равна 0, т.к. сдвиг на и

Намагничивающая сила трехфазной обмотки есть сумма прямых волн, что это бегущая волна, которая двигается вдоль зазора с синхронной скоростью и с постоянной амплитудой. Эта н.с. создает вращающееся магнитное поле, которое движется вдоль зазора с синхронной скоростью и постоянной амплитудой.

Покажем графически, что три пульсирующие волны трех фаз создают в любой момент времени бегущую волну с постоянной амплитудой, рис. 103.

Рис. 103

Для изменения направления движения волны необходимо поменять чередование фаз, т.е. сменить любые две фазы.

Намагничивающие силы высших гармоник

Вопрос о высших гармонических намагничивающих сил очень сложен. Высшие гармоники могут быть пространственные и временные. Мы рассматриваем пространственные высшие гармоники, вызванные расположением самой обмотки в пространстве.

Амплитуда намагничивающей силы  гармоники запишется

Высшие гармоники намагничивающих сил однофазной обмотки

Пульсирующая волна.

,

разложим на две бегущие волны

Здесь тоже будет прямая и обратная волна.

Скорость прямой волны

, ; ;

Скорость обратной волны

т.е. скорость н.с.  гармоники в  раз меньше основной гармоники.

Высшие гармоники намагничивающих сил трехфазной обмотки

Если намагничивающие силы высших гармоник трех фаз разложить на прямую и обратную волну, а затем их сложить, то будет видно, что высшие гармоники н.с. будут вести себя по-разному.

  1. Гармоники четные исчезнут, т.к. гармоники симметричны оси абсцисс.

  2. Гармоники кратные 3-м выпадут.  = 3, т.к. - для всех трех фаз будет иметьcos одного и того же угла, а сумма же амплитуд сдвинутых на угол ис одинаковыми амплитудами равна нулю.

Другие гармоники будут вести себя по разному, одни будут вращаться в одну сторону, другие в другую при одном чередовании фаз.

Гармоники порядка , где а = 1, 2, 3. = 5, 11, 17 … которым соответствует выражение

Эти гармоники будут вращаться в обратную сторону по отношению к н.с. первой гармоники, рис. 104.

Посмотрим чередование фаз.

Для первой гармоники

A1  B1 = 120

A5–B5=1205=600=360 + 240

обратное чередование фаз

A7–В7=1207=840=2360+120

прямое чередование фаз

Рис. 104

Гармоники порядка , = 7, 13, 19 будут вращаться в сторону первой гармоники.

3-3. Рабочий процесс асинхронного двигателя

3-3-1. Режимы работы асинхронной машины

Пусть в начале ротор не вращается. Магнитное поле, пересекая проводники ротора индуктируют в них ЭДС. При замкнутой цепи ротора по обмотке его потечет ток.

Взаимодействие потока статора и тока ротора вызовет усилие, действующее на проводник, под действием которого ротор начнет вращаться. Вращение будет в ту же сторону, что и магнитный поток.

Скорость ротора будет меньше скорости вращения магнитного поля статора, рис. 105.

Рис. 105

Скольжение .

Разберемся, в каких пределах будет изменяться скольжение.

  1. Момент зависит от потока Ф и тока I2при U = const, поток также постоянен. Если увеличивается момент на валу, то увеличивается и момент двигателя за счет увеличения тока I2, а I2Е2S, S увеличивается за счет увеличения интенсивного пересечения проводников ротора.

, при двигательном режиме скольжение Sизменяется от 1 до 0.

При неподвижном роторе n = 0, S = 1

Если ротор будет вращаться с n = n1, S = 0

Это диапазон скольжений соответствует двигательному режиму. Мощность потребляемая из сети будет преобразована в механическую на валу, рис. 106.

  1. Но если под действием спускаемого груза раскрутить ротор до скорости больше синхронной, то машина перейдет в генераторный режим

n > n1, S < 0 - скольжение отрицательное, рис. 106.

При этом режиме механическая мощность будет преобразована в электрическую, которая будет отдаваться в сеть Р1, а реактивная будет потребляться для создания магнитного потока Ф.

  1. Режим противовключения, рис. 106.

Если например в приводе имеется большой маховик, то если отключить двигатель, то маховик будет вращаться длительное время до остановки, но если же мы переключим две фазы асинхронного двигателя, то его момент будет направлен против вращения маховика и время останова его резко сократиться. При этом режиме мощность будет потребляться из сети и механическая мощность с вала и вся эта мощность будет теряться в роторе. Это тяжелый режим для асинхронной машины. Поэтому, если используется двигатель с фазным ротором, то на период работы в цепь ротора включают значительное сопротивление для ограничения тока. Если же используется короткозамкнутый двигатель, то пускают его при пониженном напряжении. Ниже на рисунке представлены все три режима работы асинхронной машины.

Рис. 106

3-3-2. Режим двигателя

Рассмотрим два крайних режима двигателя:

а) холостой ход двигателя

При холостом ходе нет нагрузки на валу, ротор под действием вращающего магнитного поля статора разгонится до скорости близкой к синхронной, а ток статора равен току холостого хода. Мощность, потребляемая из сети пойдет на покрытие потерь, т.е.

Ро= Рэл1 + Рмг + Рмех+ Рдоб

Разница между трансформатором и двигателем будет только конструктивная. В двигателе имеется воздушный зазор. Поэтому ток холостого хода двигателя равен 20 30от номинального.

б) режим короткого замыкания

При этом режиме ротор механически заторможен, а обмотка ротора закорочена. К статору подводится пониженное напряжение, при котором ток имеет значение близкое к номинальному. Мощность короткого замыкания пойдет на покрытие потерь в стали и обмотках. При номинальном напряжении пусковой ток

Iп= (57)Iн.

Используя данные режима холостого хода и короткого замыкания можно построить круговую диаграмму, а по ней определить рабочие характеристики двигателя при нагрузке.

3-3-3. Явления связанные с вращением ротора асинхронного двигателя

При рассмотрении этого вопроса увидим что частота ротора, ЭДС и индуктивное сопротивление с изменением скорости вращения ротора не остаются постоянными. Запишем выражение ЭДС неподвижного ротора.

ЭДС для вращающегося ротора

где f2 – частота ЭДС ротора

тогда E2s=4.44f1 w2 Ф k02 S = E2 S

т.е. ЭДС для вращающего ротора равна ЭДС неподвижного ротора умноженной на скольжение.

Индуктивное сопротивление неподвижного ротора

X2=2f1 L2, гдеL2 – индуктивность фазы ротора

Индуктивное сопротивление вращающего ротора

X2=2f2 L2 =2f1 L2S =X2S

т.е. индуктивное сопротивление вращающего ротора равно индуктивному сопротивлению неподвижного ротора умноженное на скольжение. Таким образом видим, что частота, ЭДС и индуктивное сопротивление ротора зависят от скольжения. Теперь можно записать выражение для тока ротора . Ток ротора будет создавать магнитное поле.

Из законов электромеханики следует, что передача энергии от одного звена к другому, для любой электрической машины, возможна лишь тогда, когда магнитные поля вращаются с одинаковой скоростью.

Докажем это для асинхронного двигателя:

1. Определим скорость магнитного потока созданного током ротораI2 относительно ротора

2. Определим скорость магнитного поля ротора относительно неподвижного статора (точка К)

, рис. 107.

Видим, что поле ротора независимо от скольжения по отношению к неподвижному статору вращается с синхронной скоростью, а поле статора также вращается с синхронной скоростью по отношению к неподвижному статору. Поэтому в пространстве поле статора и ротора неподвижны между собой.

Рис. 107

Только при этом условии возможно взаимодействие и передача энергии от статора ротору. Ток ротора создает намагничивающую силу F2, по закону Ленца она направлена против намагничивающей силы статора.

При холостом ходе ток статора равен I0, но по мере нагрузки ЭДСЕ2растет, растет и токI2, увеличиваетсяF2и поток ротора, который размагничивает поток статора, что приведет к уменьшению ЭДСЕ1, и к увеличению тока статораI1, до такой величины, чтобы скомпенсировать размагничивающий поток ротора и обеспечить постоянство потока. Поэтому уравнение намагничивающих сил асинхронного двигателя будет аналогично трансформаторному

3-3-4. Привидение параметров роторной обмотки к статорной

Под приведенной роторной обмоткой понимается такая эквивалентная роторная обмотка, которая имеет такое же число фаз, такое же число витков, как и обмотка статора.

Приведение параметров делают для того, что наглядно можно было представить все вектора токов и напряжений на векторной диаграмме и произвести количественный анализ процессов, которые происходят в асинхронной машине.

- коэффициент трансформации по ЭДС

  1. (полная мощность ротора до и после привидения должна быть неизменной)

,

где - коэффициент трансформации по току.

3) (потери в роторе до и после приведения должны быть неизменными)

,

для короткозамкнутого ротора ,. Для двигателей с фазным ротором,.

4) (угол сдвига между ЭДС и током ротора до и после приведения должен быть неизменным)

,

Соответственно . Далее во всех схемах замещения и на векторных диаграммах будем использовать приведенные параметры ротора.

3-3-5. Приведение асинхронного двигателя к эквивалентному трансформатору

По физическому смыслу работа асинхронного двигателя аналогична трансформатору, поэтому его работу и приводят к режиму трансформатора. Но у асинхронного двигателя имеются отличия от трансформатора:

1) Ротор асинхронного двигателя вращается, а трансформатор неподвижный статический аппарат. Поэтому первой задачей будет приведение асинхронного двигателя к неподвижному состоянию.