Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Аналитический обзор литературы.docx
Скачиваний:
53
Добавлен:
26.03.2015
Размер:
263.95 Кб
Скачать

1.10 Механизмы, приводящие к уменьшению емкости Li-ion аккумуляторов

При циклировании Li-ion аккумуляторов среди возможных механизмов снижения емкости наиболее часто рассматриваются следующие:

- разрушение кристаллической структуры катодного материала (особенно LiMn2O4);

- расслоение графита;

- наращивание пассивирующей пленки на обоих электродах, что приводит к снижению активной поверхности электродов и блокированию мелких пор;

- осаждение металлического лития;

- механические изменения структуры электрода в результате объемных колебаний активного материала при циклировании.

Исследователи расходятся во мнении, какой из электродов претерпевает большие изменения при циклировании. Это зависит как от природы выбранных электродных материалов, так и от их чистоты. Поэтому для Li-ion аккумуляторов удается описать только качественно изменение их электрических и эксплуатационных параметров в процессе эксплуатации.

Обычно ресурс коммерческих Li-ion аккумуляторов до понижения разрядной емкости на 20 % составляет 500-1000 циклов, но он значительно зависит от величины предельного зарядного напряжения (рисунок 12). С уменьшением глубины циклирования ресурс повышается. Наблюдаемое повышение срока службы связывают с уменьшением механических напряжений, вызываемых, изменениями объема электродов внедрения, которые зависят от степени их заряженности.

Рисунок 12. - Изменение емкости Li-ion аккумулятора при разном предельном напряжении заряда.

Повышение температуры эксплуатации (в пределах рабочего интервал) может увеличить скорость побочных процессов, затрагивающих границу раздела электрод-электролит, и несколько повысить скорость уменьшения разрядной емкости с циклами [2].

1.11 Утилизация литиевых аккумуляторов

Большие масштабы производства литиевых ХИТ с учетом используемых в них материалов делают приоритетной проблему утилизации литиевых аккумуляторов после выработки их ресурса, а также отбракованных изделий и технологических отходов производства. 

Необходимость утилизации литиевых ХИТ обусловлена как экологическими (литий, его соединения, электролит, катодные материалы являются экологически опасными и могут привести к значительному загрязнению окружающей среды), так и экономическими факторами.

Экономические факторы. В состав литиевых вторичных ХИТ входит большое количество ценных материалов: металлический литий и его соединения, содержащие дорогостоящие компоненты – кобальт, никель, и др., а также органические вещества.

Известно несколько схем утилизации литий-ионных аккумуляторов, которые используют операции вскрытия источников (механическим, электролитическим способами или с применением лазерного пучка), извлечения и нейтрализации электролита, обработки катодного материала с выделением Co, перевод лития в раствор и т. д. [12 ].

Большой интерес представляет схема процесса утилизации использованных Li-ионных аккумуляторов с положительным электродом на основе кобальтата лития и электролитом LiPF6 в смеси пропиленкарбоната с диэтилкарбонатом (рисунок 11).

Отсутствие металлического лития в литий-ионных аккумуляторах позволяет упростить разборку источников тока и процесс дальнейшей переработки отходов.

Из полученного осадка Co(OH)2 в течение 3 ч при 450°С получают Co3O4, который затем смешивают со стехиометрическим количеством Li2CO3, получающимся в процессе утилизации первичных литиевых источников тока. В результате 5-часового прогрева при 400°С, гомогенизации и последующего 20-часового отжига при 700°С получается кобальтат лития необходимого качества для использования в аккумуляторах. Таким образом, сочетая утилизацию первичных литиевых источников тока и литий-ионных аккумуляторов, удалось создать удачную технологию комплексной рекуперации литиевых источников тока. Считается целесообразным утилизацию литиевых ХИТ проводить на предприятиях, где их изготавливают.

Массовое применение литий-ионных аккумуляторов значительно упрощает проблему их сбора после выработки ресурса. Актуальность вопроса сбора и утилизации отработанных ЛХИТ приобретает все большее значение и для Республики Беларусь.

Рисунок 13. - Технологическая схема процесса переработки использованных

литий-ионных аккумуляторов.

    1. Перспективы развития

Для улучшения рабочих характеристик батареи при высоких температурах используем литиевую батарею, которая содержит катод, включающий литийсодержащий оксид переходного металла, анод, включающий графитизированный углерод, и неводный электролит с добавкой соединения аммония, способного давать ионы аммония посредством добавления в электролит соединения аммония. Этот способ заключается в том, что литиевая вторичная батарея, содержащая: активный катодный материал, включающий в себя литийсодержащий оксид переходного металла, способен осуществлять обратимое аккумулирование и высвобождение ионов лития; активный анодный материал, включающий в себя графитизированный углерод, способен осуществлять обратимое аккумулирование и высвобождение ионов лития; пористый сепаратор; и неводный электролит, содержащий литиевую соль, раствор электролита и соединение аммония, причем это соединение аммония содержится в качестве добавки в диапазоне от 0,01 до 10 мас.% в расчете на общую массу электролита, так что оно может удалять присутствующие в электролите ионы металлов и образовывать устойчивое поверхностное покрытие на аноде, чтобы ингибировать отложение ионов металлов.