Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции биохимия 2.doc
Скачиваний:
248
Добавлен:
24.03.2015
Размер:
2.98 Mб
Скачать

6.5. Сопряжённый синтез веществ.

В клетках организмов для поддержания их жизнедеятельности постоянно происходят эндергонические реакции синтеза сложных веществ из простых, в ходе которых свободная энергия системы возрастает. Источником свободной энергии для их осуществления служат экзергонические реакции, в которых энергия выделяется, или окружающая среда, как, например, свет в реакциях фотосинтеза. Если эндергоническая реакция осуществляется за счёт энергии, выделяющейся в сопряжённой с ней экзергонической реакции, такие две реакции называют сопряжёнными реакциями синтеза того или иного вещества, а происходящий в этих реакциях биохимический процесс получил название сопряжённого синтеза веществ. Обе реакции катализирует, как правило, один фермент, который объединяет их в одну термодинамическую систему. Существует целый класс таких ферментов, называемых лигазами, илисинтетазами, с участием которых осуществляется сопряжённый синтез веществ.

Для того чтобы реакции сопряжённого синтеза веществ могли проходить самопроизвольно, согласно второму закону термодинамики в экзергонической реакции должно выделяться энергии больше, чем потребляется в эндергонической реакции, так как коэффициент использования энергии в биохимических системах составляет 40-60 %. А основное термодинамическое условие самопроизвольного осуществления любых реакций в биохимической системе заключается в том, что общее количество в ней свободной энергии в ходе реакции уменьшается. Поэтому суммарное изменение свободной энергии при сопряжённом синтезе будет оставаться величиной отрицательной, то есть можно записать:

DGсопр.=DGэкз. +DGэнд.< 0.

Таким образом, оценивая процесс сопряжённого синтеза веществ количественно, мы видим, что в экзергонической реакции должно высвобождаться свободной энергии почти в два раза больше, чем её требуется для прохождения эндергонической реакции. Однако в большинстве экзергонических и эндергонических реакций, осуществляемых в организмах, изменение свободной энергии характеризуется сопоставимыми величинами и оно обычно не превышает 20 кДж/моль. Поэтому большинство биохимических реакций не способны высвобождать необходимое количество свободной энергии для сопряжённого синтеза веществ. Для осуществления такого синтеза в организмах используются специальные реакции, в ходе которых происходит большое изменение свободной энергии, при стандартных условиях оно составляет – 30 - 60 кДж/моль. В этих реакциях превращению подвергаются специализированные формы органических веществ, называемые макроэргическимисоединениями.

В составе макроэргического соединения имеется определённая группировка, которая присоединяется сильно поляризованной связью. Эту связь принято называть макроэргическойи её обозначают короткой волнистой линией ~. При взаимодействии макроэргического соединения с определённым акцептором группировка, присоединённая макроэргической связью, легко переносится ферментом на молекулу акцептора, при этом в ходе реакции высвобождается большое количество энергии. Схематически ход такой реакции можно записать следующим образом:

М ~ х + А ¾®М + А –х,DG°΄= –30 - 60кДж×моль-1

В связи с тем, что в ходе превращений макроэргических соединений происходит перенос группировки и высвобождается большое количество свободной энергии, их также называют соединениямисвысокимпотенциаломпереносагрупп.

Макроэргические соединения подразделяют на три класса: фосфаты,тиоэфирыиимидазолы. Все они содержат в молекулах сильно поляризованные макроэргические связи, которые соединяют разные группировки атомов.

Фосфатыимеют остатки фосфорной кислоты, присоединённые макроэргической связью к нуклеотидной, ацильной, енольной или аминной группировкам, в результате образуются четыре группы макроэргических фосфатов: нуклеозидполифосфаты, ацилфосфаты, енолфосфаты, амидинфосфаты. В молекулах макроэргичесих фосфатов остаток фосфорной кислоты с макроэргической связью очень часто записывают сокращённо ~(Р) .

Нуклеозидполифосфаты(пирофосфаты) представляют собой производные нуклеотидов, к фосфатным группировкам которых макроэргическими связями присоединяются ещё один или два остатка фосфорной кислоты с образованием соответствующих нуклеозиддифосфатов и нуклеозидтрифосфатов (см. гл. «Нуклеотиды»). Наиболее важное биохимическое значение как макроэргические соединения имеют следующие нуклиозидполифосфаты: аденозинтрифосфат (АТФ), гуанозинтрифосфат (ГТФ), уридинтрифосфат (УТФ), цитидинтрифосфат (ЦТФ), инозинтрифосфат (ИТФ). Все они содержат пирофосфатную группировку с макроэргическими связями, присоединённую к рибонуклеотидному остатку. Схематически строение указанных рибонуклеозидтрифосфатов можно показать в виде следующей формулы:

OOO

|| || ||

рибонуклеозид-О- Р-О~Р-О~Р-ОН

| | |

OHOHOH

В молекулах дезоксирибонуклеозидтрифосфатов также содержатся пирофосфатные группировки с макроэргическими связями, поэтому они являются макроэргическими соединениями. Однако их биологическая роль заключается лишь в том, что они участвуют в синтезе молекул ДНК, но не могут служить источником энергии для сопряжённого синтеза других веществ. Рибонуклеозидтрифосфаты, кроме участия в сопряжённом синтезе веществ, служат источниками фосфатных групп для различных реакций фосфорилирования, источниками энергии для биохимических процессов поглощения и транспорта веществ, также являются исходными соединениями в синтезе молекул РНК и коферментных группировок (НАД, НАДФ, ФАД, КоА).

Ацилфосфатыявляются макроэргическими фосфатами карбоновых кислот. У них остаток фосфорной кислоты соединяется макроэргической связью с кислородом карбоксильной группы кислоты. Строение ацилфосфатов выражается формулой:

R-C-O ~(P)

||

O

Важнейшие представители ацилфосфатов - 1.3-дифосфоглицерино-вая кислота, ацилфосфат, сукцинилфосфат и др. Как мы узнаем в дальнейшем, 1,3 дифосфоглицериновая кислота образуется в качестве промежуточного продукта в реакциях цикла Кальвина и анаэробной стадии дыхания, где этот макроэргический фосфат участвует в синтезе АТФ. Ацетилфосфат является промежуточным продуктом в синтезе ацетилкофермента А, принимающего участие во многих биосинтетических реакциях, а сукцинилфосфат – промежуточным метаболитом при фосфоролизе сукцинилкофермента А, который происходит в цикле Кребса и служит источником образования АТФ (у растений) или ГТФ (у человека и животных).

СН2О(Р) СН3 СООН

| | |

CHOH C=O CH2

| \ |

C=O O~ (P) CH2

\ ацетилфосфат |

O~ (P) C=O

1,3-дифосфоглицериновая \

кислота O~(P)

сукцинилфосфат

Енолфосфаты. Наиболее типичный представитель енолфосфатов –

фосфоенолпировиноградная кислота:

Н2С=С-O~(P)

|

COOH

В её молекуле остаток фосфорной кислоты соединён макроэргической связью с кислородом енольного гидроксила. Фосфоенолпировиноградная кислота образуется в анаэробной стадии дыхания, а также при декарбоксилировании щавелевоуксусной кислоты с участием ГТФ. Это макроэргическое соединение может служить источником фосфатной группы в процессе синтеза АТФ и акцептором СО2в реакциях карбоксилирования.

Амидинфосфатыимеют макроэргическую >N~(P) связь и играют важную роль в реакциях обмена азотистых веществ в качестве промежуточных соединений. Одним из таких соединений является аргининфосфат, образующийся как продукт фосфорилирования аминокислоты аргинина:

НООС-СН-СН2-СН2 –СН2-NH-C - N~(P)

| || |

NH2 NH H

Тиоэфиры. У тиоэфиров макроэргическая связь возникает между углеродом карбоксильной группы и атомом серы тиоловой группировки

(-SH). Среди них наиболее распространённые соединения – ацилтиоэфиры, которые представляют собой производные карбоновых кислот и кофермента А:

R-C~S-КоА.

||

О

Кофермент А включает остатки адениловой, пантотеновой и фосфорной кислот, а также тиоэтаноламина, имеющего тиоловую группу (стр. …). Сокращённо молекулу кофермента А записывают HS-КоА. Важными представителями ацилтиоэфиров являются ацетилкофермент А и пропионилкофермент А.

СН3-С~S-КоА СН3-СН2-С~S-КоА

|| ||

OO

ацетилкофермент А пропионилкофермент А

Ацетилкофермент А – промежуточный продукт реакций дыхания, служит исходным соединением для синтеза жирных кислот, фенольных и терпеноидных соединений, стероидных липидов. Пропионилкофермент А – важный промежуточный продукт в обмене веществ микроорганизмов.

Имидазолы– макроэргические производные имидазола, наиболее известным из которых является ацетилимидазол:

НС = CH

| >N~C-CH3

N = CH ||

O

В зависимости от типа макроэргической связи и природы акцептора, на который переносится группировка макроэргического соединения, изменение свободной энергии в результате превращения макроэргического соединения может изменяться в значительном интервале. Для сравнения потенциалов переноса групп различных макроэргических соединений обычно определяют изменение свободной энергии в реакциях гидролиза макроэргических связей, в которых акцепторами для переноса групп служат молекулы воды. Сопоставление этих показателей проводится в стандартных условиях при рН=7,0. Величины стандартной свободной энергии гидролиза важнейших макроэргических соединений приведены в таблице 10.

Рассмотрим конкретный пример сопряжённого синтеза веществ с участием макроэргического соединения. В процессе синтеза аминокислот довольно активно происходит образование амида глутаминовой кислоты глутамина из глутаминовой кислоты и аммиака под действием фермента