Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции биохимия 2.doc
Скачиваний:
248
Добавлен:
24.03.2015
Размер:
2.98 Mб
Скачать

8.3. Синтез и распад олигосахаридов и полисахаридов.

Наиболее распространенный олигосахарид растений – сахароза, который синтезируется только в клетках растений и выполняет в них роль транспортной формы, а также может накапливаться в качестве запасного вещества в корнеплодах сахарной свеклы, сахарном тростнике, овощах, плодах и ягодах. В листьях растений синтез сахарозы происходит в цитоплазме фотосинтезирующих клеток из УДФ-глюкозы и фруктозо-6-фосфата, образующегося в реакциях цикла Кальвина.

На первом этапе синтеза сахарозыa-глюкоза подвергается активированию путём фосфорилирования от АТФ под действием фермента гексокиназы. В результате реакции образуется глюкозо-6-фосфат и АДФ:

a-глюкоза глюкоза-6-фосфат

Затем глюкозо-6-фосфат изомеризеутся в глюкозо-1-фосфат с участием ферментафосфоглюкомутазы:

глюкозо-6-фосфат глюкозо-1-фосфат

В следующей реакции глюкозо-1-фосфат взаимодействует с уридинтрифосфатом (УТФ), при этом образуются уридиндифосфатглюкоза (УДФ-глюкоза) и пирофосфорная кислота. Реакцию катализирует фермент глюкозо-1-фосфатуридилилтрансфераза (2.7.7.9):

глюкозо-1-фосфат УДФ-глюкоза

После этого из УДФ-глюкозы с участием фруктозо-6-фосфата осуществляется синтез сахарозофосфата под действием фермента сахарозофосфат-УДФ-глюкозилтрансферазы (2.4.1.14):

УДФ-глюкоза фруктозо-6-фосфат сахарозофосфат

С участием фермента сахарозофосфатазысахарозофосфат гидролизуется с образованием сахарозы и фосфорной кислоты:

сахарозофосфат + Н2О¾®сахароза + Н3РО4

Таким образом, для синтеза сахарозы затрачивается энергия макро-эргических связей АТФ и УТФ, необходимых для активирования a-глю-козы, а также энергия биоэнерггетических продуктов световой фазы фотосинтеза, которая потребляется в реакциях цикла Кальвина при образовании фруктозо-6-фосфата.

В нефотосинтезирующих клетках растений (корнеплодов, клубней картофеля и земляной груши, зародышей пшеницы и кукурузы, семян гороха и др.) найден фермент сахарозо-УДФ-глюкозилтрансфераза(2.4.1.13), катализирующий синтез сахарозы из УДФ-глюкозы и фруктозы в соответсвии со следующей реакцией:

УДФ-глюкоза + фруктоза D сахароза + УДФ

Следует отметить, что при высокой концентрации УДФ данный фермент может катализировать и обратную реакцию образования УДФ-глюкозы и фруктозы из сахарозы. С помощью такой реакции, например, происходит включение транспортной формы углеводов–сахарозы в биохимические превращения, имеющие место в акцепторных клетках растений.

Другой путь включения сахарозы в обмен веществ организма – её гидролиз под действием фермента b-фруктофуранозидазы, который даёт свободные формы моносахаридов глюкозы и фруктозы:

сахароза + Н2О ¾® глюкоза + фруктоза

Фермент b-фруктофуранозидаза (или инвертаза) содержится в клетках растений, животных, грибов. В клетках бактерий найден также ферментсахарозофосфорилаза, который способен превращать сахарозу во фруктозу и глюкозо-1-фосфат:

сахароза + Н3РО4 ¾®глюкозо-1-фосфат + фруктоза

Образующийся в этой реакции глюкозо-1-фосфат может затем непосредственно включиться в реакции анаэробного дыхания.

Синтез полисахаридов катализируют ферменты гликозилтрансфе-разы, которые осуществляют перенос остатков соответствующих моносахаридов, связанных с нуклеозиддифосфатными группировками, на акцептор, представляющий собой олигосахарид, который включает 2-4 соединённых О-гликозидными связями моносахаридных остатка. При этом могут синтезироваться полимеры, имеющие линейную (цепочечную) структуру или разветвлённые молекулы, состоящие как из одинаковых, так и из разных моносахаридных остатков. Многие гликозилтрансферазы представлены белками, которые связаны в определённых участках с внутриклеточными мембранами.

Синтез крахмала. Крахмал в растительных тканях представлен двумя полисахаридами амилозой и амилопектином. Синтез амилозы происходит в 3 этапа. Вначале осуществляется активирование a-глюкозы путём фосфорилирования и образования аденозиндифосфатглюкозы (АДФ-глюкозы) под действием фермента АДФГ-пирофосфорилазы:

гексокиназа

глюкоза + АТФ ¾¾¾® глюкозо-6-фосфат + АДФ

фосфоглюко-

глюкозо-6-фосфат ¾¾¾® глюкозо-1-фосфат

мутаза

АДФГ-пиро-

глюкозо-1-фосфат + АТФ ¾¾¾® АДФ-глюкоза + Н4Р2О7

фосфорилаза

На следующем этапе с участием АДФ-глюкозы под действием фермента глюкозилтрансферазы синтезируется олигосахарид, состоящий из 2-4 остатков глюкозы, соединённых a(1®4)-связями. Фермент глюкозилтрансферазу очень часто называют D-ферментом. Образующийся под действием D-фермента олигосахарид далее служит акцептором для присоединения глюкозных остатков от АДФ-глюкозы при синтезе полимера.

Образование цепочечных структур молекул амилозы катализирует фермент АДФГ-крахмалглюкозилтрансфераза (2.4.1.21). Реакция протека-ет по следующей схеме:

(глюкоза)n + АДФ-глюкоза ¾® (глюкоза)n+1 + АДФ

первичный акцептор промежуточный продукт

полимеризации

В этой реакции с помощью фермента остаток глюкозы от АДФ-глюкозы переносится на первичный акцептор, в результате чего его глюкозная цепь удлиняется на один остаток. Затем полученный продукт становится акцептором следующего остатка глюкозы и так продолжается присоединение глюкозных остатков от АДФ-глюкозы на соответствующий промежуточный акцептор, пока не закончится полный синтез молекулы амилозы.

В ходе синтеза амилозы образуется длинная цепь до 300 глюкозных остатков, соединённых О-гликозидными a(1®4)-связями. При этом следует отметить, что остатки глюкозы в процессе синтеза крахмала всегда присоединяются к нередуцирующим концам полисахаридной цепи акцептора (т.е. со стороны НО-группы четвёртого углеродного атома глюкозы).

Синтез a(1®6)-связяей в молекулах амилопектина, за счёт которых образуются разветвлённые молекулы, осуществляется с участием так называемого Q-фермента, который по современной номенклатуре ферментов получил название a-глюкантрансферазы (2.4.1.18). Q-фермент способен катализировать перенос определённого участка полиглюкозной цепи на НО-группу шестого углеродного атома одного из глюкозных остатков прилегающей и параллельно расположенной полисахаридной цепи. Расстояние между ответвлениями в цепи зависит от природы фермента.

Донорорм глюкозных остатков для синтеза крахмала может также служить УДФ-глюкоза, но при этом скорость реакции очень сильно замедляется. Однако в клетках животных организмов основным источником глюкозных остатков для построения молекул гликогена (аналога крахмала) служит УДФ-глюкоза.

Распад крахмала. Распад молекул крахмала может происходить путём гидролиза или фосфоролитических реакций. Гидролитическое расщепление a(1®4)-связей в молекулах крахмала катализируют амилазы: a-амилаза (3.2.1.1), b-амилаза (3.2.1.2), глюкоамилаза (3.2.1.3).

a-Амилазы действуют на a(1®4)-связи между точками ветвления и способны расщеплять молекулы амилопектина на более мелкие фрагменты, представляющие собой низкомолекулярные полисахариды – декстрины. Для проявления каталитической активности a-амилаз необходимо присутствие в реакционной среде хлорид-ионов, которые служат активаторами фермента. Без участия a-амилаз невозможно полное гидролитическое расщепление молекул амилопектина.

Под действием b-амилаз происходит гидролитическое расщепление a(1®4)-связей на концах полисахаридных цепей целых молекул или декстринов с образованием b-мальтозы. Действие этих ферментов прекращается при достижении точек ветвления молекул крахмала, в которых глюкозные остатки соединены a(1®6)-связями.

Глюкоамилазы так же, как и b-амилазы, катализируют гидролиз a(1® 4)-связей на концах полисахаридных цепей, но в результате действия этих ферментов образуются молекулы глюкозы.

Гидролитическое расщепление a(1®6)-связей в точках ветвления молекул амилопектина катализируют R-ферменты, которые называют амилопектин-1,6-глюкозидазами (3.2.1.9)

Под действием всего набора амилолитических ферментов крахмал гидролизуется с образованием мальтозы и глюкозы. Однако на мальтозу также действуют ферменты, относящиеся к гидролазам, a-глюкозидазы (3.2.1.20), которые расщепляют молекулы мальтозы с образованием глюкозы. Схематически действие гидролитических ферментов на молекулу крахмала показано на рисунке 38.

Препараты, содержащие амилолитические ферменты, используются в производстве хлеба, пива, пищевого спирта, а также в качестве кормовых добавок в животноводстве для улучшения переваривания крахмала, содержащегося в кормах.

Фосфоролитическое расщепление молекул крахмала катализируют ферменты a-глюканфосфорилазы (2.4.1.1). Под действием этих ферментов осуществляется перенос глюкозных остатков от молекул крахмала на фосфорную кислоту, при этом в качестве основного продукта реакции образуется глюкозо-1-фосфат, который далее может быть использован для синтеза УДФ-глюкозы или включаться в анаэробную стадию дыхания. Реакции фосфоролиза крахмала проходят по следующей схеме:

(глюкоза)n + Н3РО4 ¾® глюкозо-1-фосфат + (глюкоза)n-1

крахмал

Особенно высокая активность амилаз и a-глюканфосфорилаз наблюдается при прорастании семян, клубней и луковиц, когда в них происходит интенсивный распад полисахаридов крахмала и увеличивается концентрация декстринов, мальтозы и моносахаридов, используемых для формирования тканей проростков.

В процессе распада крахмал не только может превращаться в мальтозу и глюкозу, но также и в сахарозу. Наиболее активно такие превращения происходят в листьях растений с фотосинтетическим крахмалом. На первом этапе указанных превращений под действием соответствующего трансгликозилирующего фермента остатки глюкозы от крахмала переносятся на УДФ, в результате образуется УДФ-глюкоза:

(глюкоза)n + УДФ ¾® УДФ-глюкоза + (глюкоза)n-1

крахмал декстрин