Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции биохимия 2.doc
Скачиваний:
248
Добавлен:
24.03.2015
Размер:
2.98 Mб
Скачать

7. Стандартные энтальпии образования (dн˚) и стандартные

энтропии (S˚) некоторых биохимических продуктов

Биохимические продукты

DН˚ (кДж×моль-1)

S0(Дж×моль-1×К-1)

Н2О (жидкость)

СО2(газ)

NH3(газ)

муравьиная кислота

уксусная кислота

a-D-глюкоза

b-D-глюкоза

сахароза

глицерин

D,L-глицин

D,L-аланин

L-аспарагиновая кислота

L-аспарагин

L-глутаминовая кислота

бензойная кислота

щавелевая кислота

этиловый спирт

пропанол

изопропанол

-286

-394

-46

-377

-487

-1247

-1268

-2224

-670

-531

-566

-978

-793

-1010

-385

-827

-278

-660

-261

70

214

193

251

160

212

228

360

204

109

132

174

175

191

168

120

161

318

307

В качестве примера рассмотрим реакцию синтеза аспарагина из аспарагиновой кислоты и аммиака:

O

//

СН2-СООН CH2-C- NH2

| + NH3 ¾® | + H2O

Н2N-CH-COOH Н2N-CH-COOH

аспарагиновая кислота аспарагин

DН˚реакции = (DН˚аспарагина +DН˚н2о) – (DН˚асп.кислоты +

DН˚NH3) = (-793-286) – (-978-46) = -1079 + 1024 = -55 кДж.

Поскольку изменение энтальпии при синтезе аспарагина из аспарагиновой кислоты имеет отрицательное значение, то это – экзотермическая реакция, в ходе которой выделяется тепловая энергия (55 кДж в расчёте на каждый моль синтезируемого аспарагина при стандартных условиях).

В соответствии с законом Гесса тепловой эффект реакции можно также определить по теплоте сгорания реагирующих веществ и продуктов реакции. Особенно это важно для тех процессов, в которых участвуют биохимические компоненты с неизвестной величиной стандартной энтальпии образования. Тепловой эффект такой реакции будет равен разности между суммарным значением теплоты сгорания реагирующих веществ и суммой теплот сгорания продуктов реакции (с учётом коэффициентов в уравнении реакции).

6.3. Термодинамические критерии направленности биохимических превращений

Биохимические процессы в организме происходят самопроизвольно в определённом направлении, обеспечивающем их нормальную жизне-деятельность. Изменения энтальпии или внутренней энергии системы, происходящие в соответствии с первым законом термодинамики, позволяют количественно определить тепловой эффект реакции, превращения различных форм энергии, параметры обмена биохимических систем веществом и энергией с окружающей средой, но эти термодинамические функции не могут служить критериями, определя-ющими направление реакций, возможность их самопроизвольного осуществления. Они также не позволяют оценить, какое количество энергии должна получить биохимическая система для того, чтобы инициировать в ней самопроизвольное превращение. Согласно второму закону термодинамики таким критерием является термодинамическая функция, получившая название энтропии.

Энтропия выражает собой отношение изменения тепловой энергии в ходе реакции или процесса к температуре. Она служит показателем термодинамического состояния системы и её изменение не зависит от пути биохимического превращения, а определяется как разность между конечным и начальным состоянием системы. Для изотермических процессов, которые характерны для биохимических систем (проходят при постоянной температуре), изменение энтропии определяется соотношением:

ΔQ

DS=S2–S1=

T

где DQ– количество тепла, выделяемое или поглощаемое системой в ходе процесса. Для многих органических и неорганических веществ рассчитаны значения энтропии при стандартных условиях, которые выражаются в джоулях в расчёте на 1 моль вещества и на 1 кельвин (единица абсолютной термодинамической температурной шкалы). Некоторые из этих величин приведены в таблице 7. Используя стандартные энтропии химических соединений, можно рассчитать изменение энтропии в ходе биохимической реакции, которое равно разности стандартных энтропий продуктов реакции и реагирующих веществ (с учётом коэффициентов в уравнении реакции):

S˚ = ∑S˚продуктов - ∑S˚реагентов

Функция энтропии характеризует ту часть энергии системы, которую невозможно превратить в работу или использовать для синтеза веществ в организме. При любом самопроизвольном процессе количество такой энергии увеличивается и, когда оно достигает максимума, способность системы к самопроизвольным превращениям утрачивается. Таким образом, чем меньше энтропия, тем большей способностью к самопроизвольному процессу обладает система. При самопроизвольных процессах в закрытых системах энтропия возрастает и поэтому изменение энтропии будет величиной положительной (DS>0).

Живые организмы и входящие в их состав различные биохимические системы представляют собой открытые системы и у них в результате обмена энергией с окружающей средой при самопроизвольном процессе энтропия системы может уменьшаться, а энтропия окружающей среды возрастает до такого уровня, при котором суммарное изменение энтропии системы и окружающей среды остаётся величиной положительной, то есть общее изменение энтропии в системе и окружающей среде при самопроизвольном процессе выражается в виде следующего неравенства:

DSпроцесса = ∑DSсистемы + ∑DSсреды>0

В полной мере такое неравенство может быть показано на примере целого функционирующего организма. В процессе роста и развития организма его энтропия уменьшается, а энтропия окружающей среды увеличивается. При этом возрастает способность организма к самопроизвольным биохимическим превращениям.

Исходя из указанного неравенства, для оценки возможности и направления самопроизвольного превращения в биохимической системе необходимо определить изменение энтропии как в системе, так и в окружающей среде. Однако рассчитать изменение энторпии в окружающей среде практически невозможно, поэтому в термодинамических расчётах для биохимических систем обычно определяют величину изменения энтропии только в системе и используют этот показатель для оценки другой термодинамической функции – свободнойэнергии.

Свободная энергия – это часть общей энергии системы, которая может быть использована для выполнения работы, а в живом организме – для синтеза жизненно необходимых веществ, создания электрохимического потенциала в клеточных мембранах, переноса веществ и ионов против градиента концентрации и др. Она является функцией состояния системы, поэтому её изменение, как и энтропии и энтальпии, не зависит от того, каким путём происходит переход системы от одного состояния к другому.

Если термодинамические параметры системы оценивают при постоянном давлении и температуре, характерном для живых организмов, то указанную термодинамическую функцию называют свободнойэнергиейГиббса. Изменение этой функции в изобарно-изотермическом процессе связано с изменением энтальпии и энтропии в виде следующего уравнения:DG=DH-TDS. Экспериментально и теоретически установлено, что при самопроизвольных (спонтанных) процессах, происходящих в организмах, свободная энергия системы уменьшается, в связи с чем изменение свободной энергии в ходе такого процесса будет величиной отрицательной. Если, например, система самопроизвольно переходит из состояния, характеризующегося запасом свободной энергииG1, в другое состояние с запасом свободной энергииG2, тоG2будет меньшеG1, в связи с чем изменение свободной энергии будет равноDG=G2–G1 <0 (при постоянных температуре и давлении).

Таким образом, в данных условиях изменение свободной энергии является критерием самопроизвольности процесса: при отрицательном значении изменения свободной энергии (DG <0) система способна к спонтанному биохимическому превращению, а еслиDG >0, то самопроизвольный ход превращения в системе невозможен. В этом случае положительное значение изменения свободной энергии показывает, какое количество свободной энергии должно поступить в систему для самопроизвольного осуществления данной биохимической реакции или данного процесса. Отрицательное значение изменения свободной энергии кроме того показывает, какое количество свободной энергии выделяется в ходе процесса и поступает в окружающую среду или отдаётся другой биохимической системе.

Следует также отметить, что в биоэнергетических системах изменение свободной энергии, как правило, не равно нулю, что наблюдается при наступлении термодинамического равновесия. Однако биохимические системы в ходе превращений веществ почти никогда не достигают истинного химического равновесия. Для них характерны так называемые стационарные состояния, когда поддерживаются определённые скорости притока веществ и энергии в систему и их оттока из системы, так как образующиеся в ходе реакции продукты не накапливаются, а подвергаются дальнейшим превращениям. При достижении стационарного состояния обеспечиваются максимальные скорости биохимических превращений, которые сопровождаются также значительным уменьшением или увеличением свободной энергии.

Биохимические реакции, в ходе которых свободная энергия системы уменьшается (DG <0), принято называтьэкзергоническими, а реакции, при которых свободная энергия в системе возрастает (DG >0), –эндергоническими. Эгзергонические реакции происходят самопроизвольно и они сопровождаются переходом системы на более низкий энергетический уровень в результате выделения свободной энергии. Эндергонические реакции могут происходить самопроизвольно только при условии притока необходимой для их осуществления свободной энергии из окружающей среды или другой биохимической системы, в которой происходит экзергоническая реакция.

С целью проведения термодинамических расчётов определены стандартные свободные энергии образования многих химических веществ, включая и важнейшие биохимические продукты, из химических элементов или простых веществ при стандартных условиях. Некоторые из этих показателей представлены в табл. 8.

8. Стандартные свободные энергии образования некоторых

биохимических продуктов

Биохимические

продукты

DG°΄

кДж×моль-1

Биохимические

продукты

DG°΄

кДж×моль-1

Уксусная кислота

-393

Глицерин

-477

Этиловый спирт

-175

Муравьиная кислота

-350

Щавелевая кислота

-698

Фумаровая кислота

-654

3

-17

Масляная кислота

-377

СО2

-394

Бензойноя кислота

-245

Н2О

-237

Сахароза

-1545

Гидрохинон

-217

Глицин

-367

Бутанол

-161

Мочевина

-197

Пропанол

-470

Изопропанол

-164

Зная стандартные свободные энергии образования химических веществ, можно рассчитать изменение свободной энергии в любой реакции, происходящей в стандартных условиях. Оно равно разности суммарных изменений свободной энергии продуктов реакции и реагирующих веществ (с учётом коэффициентов в уравнении реакции):

DG˚реакции = ∑DG˚ продуктов - ∑DG˚ реагентов

Если хотя бы для одного из реагирующих веществ или продуктов реакции нет сведений о стандартной свободной энергии образования, изменение свободной энергии в ходе биохимического превращения рассчитывают другим способом в зависимости от того, какие имеются сведения о компонентах биохимической системы. Довольно часто для определения DG˚ используют сведения о стандартных энтальпиях образования и стандартных энтропиях химических веществ. На основе этих данных изменение свободной энергии рассчитывают по формуле:

DG˚реакции =DH˚реакции -TDS˚реакции,

где DH˚реакции = ∑DН˚продуктов - ∑DН˚реагентов;DS˚реакции = ∑S˚продуктов - ∑S˚реагентов; Т - стандартное значение температуры (298,16 К).

Если известна константа равновесия биохимической реакции, то расчёт изменения свободной энергии в этой реакции при стандартных условиях очень легко выполнить в соответствии с уравнением:

DG˚΄= –RТlnКр,

где R- универсальная газовая постоянная (8,314 Дж×моль-1×К-1 ), Т – стандартная температура (298,16 К), Кр– константа равновесия биохимической реакции при рН = 7,0 и постоянном давлении. Как следует из указанного уравнения, при значениях константы равновесия химической реакции больше единицы (Кр>1)lnКрбудет величиной положительной, а согласно уравнению изменение свободной энергии в ходе реакции отрицательно (DG˚΄<0). А если константа равновесия реакции меньше единицы (Кр<1), то в этом случаеlnКримеет отрицательное значение, аDGстановится величиной положительной, что является показателем эндергонического превращения.

Константа равновесия химической реакции может быть рассчитана, если известны равновесные концентрации реагирующих веществ и продуктов реакции. Она в соответствии с законом действующих масс выражается как отношение произведения равновесных концентраций продуктов реакции к произведению равновесных концентраций реагирующих веществ, у которых показатели степени равны стехиометрическим коэффициентам в уравнении реакции. Для химической реакции хА+уB®nС +rDконстанта равновесия будет равна:

[C]ⁿ ·[D]ʳ

Кр =

[A]ˣ·[B]ʸ

С учётом более строгого соответствия указанных расчётов закону действующих масс необходимо вместо концентраций ввести активности реагирующих веществ и продуктов реакции. Однако физиологические растворы в клетках организмов довольно сильно разбавлены и растворённые в них химические вещества имеют сравнительно низкие концентрации, которые по своей величине очень мало отличаются от активностей, в связи с чем при расчёте констант равновесия биохимических реакций поправки на активность обычно не вводятся. К тому же для многих биохимических продуктов их активности в физиологической среде пока точно не установлены.

В организмах важную роль играют окислительно-восстановительные реакции, в которых происходит перенос электронов от вещества - донора к веществу - акцептору. В зависимости от типа реакции и природы фермента - переносчика осуществляется перенос одного или пары электронов и одновременно с электронами возможен также перенос протонов (Н+). В результате переноса электронов изменяются электрические заряды донора и акцептора электронов и их окислительно-восстановительные потенциалы.

По величине окислительно-восстановительных потенциалов определяется направленность и возможность самопроизвольного осуществления биохимических реакций, происходящих в живых организмах. Донором электронов служит биохимическая система, имеющая наименьший окислительно-восстановительный потенциал (наиболее отрицательный), а конечным акцептором электронов – система с наибольшим окислительно-восстановитель-ным потенциалом (имеющим менее отрицательное или наибольшее положительное значение). В цепи переносчиков перенос электронов осуществляется от окислительно-восстановительной системы с отрицательным потенциалом к системе с менее отрицательным или положительным потенциалом, то есть электроны с помощью переносчиков передаются от одной окислительно-восстановительной системы к другой в направлении возрастания величины окислительно-восстановительного потенциала.

Для сравнения величины окислительно-восстановительных потенциалов различных биохимических систем используют стандартные окислительно-восстановительные потенциалы, которые определяют по сравнению с нормальным водородным электродом в стандартных термодинамических условиях. Учитывая, что величины окислительно-восстановитель-ных потенциалов зависят от степени ионизации реагирующих веществ и образующихся продуктов, которая в значительной степени определяется концентрацией катионов водорода (Н+), стандартные окислительно-восстановительные потенциалы биохимических систем определяют при рН = 7,0 и обозначают символом Е°ˈ. Значения стандартных окислительно-восстановительных потенциалов наиболее важных биохимических систем показаны в табл. 9. Из этих данных мы видим, что они находятся в интервале между значениями потенциалов водородного и кислородного электродов (от –0,42В до 0,82В при РН= 7,0).

В биохимических системах в процессе переноса электронов при осуществлении окислительно-восстановительных реакций происходит значительное изменение свободной энергии, связанной с величиной стандартных окислительно-восстановительных потенциалов донора и акцептора электронов следующим уравнением:

DG°΄= -nFDЕ°΄,

где n- число переносимых электронов от молекулы–донора на молекулу– акцептора;F– постоянная Фарадея (96406 Дж×В-1);DЕ°΄– разность стандартных окислительно-восстановительных потенциалов акцептора и донора электронов при рН=7,0 (DЕ°΄акц.-DЕ°΄дон.);DG°΄– изменение свободной энергии в джоулях при стандартных условиях (рН=7,0).

Так, например, в реакциях обмена азотистых веществ происходит окислительно-восстановительная реакция превращения окисленной формы глютатиона в восстановленную с участием восстановленных динуклео-тидов НАДФ×Н:

глютатион-S-S-глютатион + НАДФ×Н + Н+ ¾® 2глютатион- SН + НАДФ+

В ходе реакции происходит перенос двух электронов и двух протонов от НАДФ×Н + Н+на окисленный глютатион. Стандартный окислительно-восстановительный потенциал системы восстановлен-ный/окисленный глютатион при рН=7,0 равен – 0,23В, а для системы НАДФ+/ НАДФ×Н – 0,32В. Разность стандартных окислительно-восстановительных потенциалов акцептора и донора электронов будет равна:

DЕ°΄ = Е°΄акцт.- Е°΄дон.= Е°΄глют.окисл.- Е°΄НАДФ×Н= -0,23В + 0,32В = 0,09В.