
- •Глава 1
- •§ 1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения
- •§ 2. Скорость
- •§ 3. Ускорение и его составляющие
- •§ 4. Угловая скорость и угловое ускорение
- •Глава 2
- •§ 5. Первый закон Ньютона. Масса. Сила
- •§6. Второй закон Ньютона
- •§ 7. Третий закон Ньютона
- •§ 8. Силы трения
- •§ 9. Закон сохранения импульса. Центр масс
- •§ 10. Уравнение движения тела переменной массы
- •Глава 3 Работа и энергия
- •§11. Энергия, работа, мощность
- •§ 12. Кинетическая и потенциальная энергии
- •§ 13. Закон сохранения энергии
- •§ 14. Графическое представление энергии
- •§ 15. Удар абсолютно упругих и неупругих тел
- •Глава 4
- •§ 16. Момент инерции
- •§ 17. Кинетическая энергия вращения
- •§ 18. Момент силы. Уравнение динамики вращательного движения твердого тела
- •§ 19. Момент импульса и закон его сохранения
- •§ 20. Свободные оси. Гироскоп
- •§21. Деформации твердого тела
- •Глава 5
- •§ 22. Законы Кеплера.
- •§ 23. Сила тяжести и вес. Невесомость
- •§ 24. Поле тяготения и его напряженность
- •§ 25. Работа в поле тяготения. Потенциал поля тяготения
- •§ 26. Космические скорости
- •§ 27. Неинерциальные системы отсчета. Силы инерции
- •Глава 6
- •§ 28. Давление в жидкости и газе
- •§ 29. Уравнение неразрывности
- •§ 30. Уравнение Бернулли и следствия из него
- •§ 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей
- •§ 32. Методы определения вязкости
- •§ 33. Движение тел в жидкостях и газах
- •Глава 7
- •§ 34. Преобразования Галилея. Механический принцип относительности
- •§ 35. Постулаты специальной (частной) теории относительности
- •§ 36. Преобразования Лоренца
- •§ 37. Следствия из преобразований Лоренца
- •§ 38. Интервал между событиями
- •§ 39. Основной закон релятивистской динамики материальной точки
- •§ 40. Закон взаимосвязи массы и энергии
- •Глава 9
- •§ 50. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- •§51. Первое начало термодинамики
- •§ 52. Работа газа при изменении его объема
- •§ 53. Теплоемкость
- •§ 54. Применение первого начала термодинамики к изопроцессам
- •§ 55. Адиабатический процесс. Политропный процесс
- •§56. Круговой процесс (цикл). Обратимые и необратимые процессы
- •§ 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью
- •§ 58. Второе начало термодинамики
- •§ 59. Тепловые двигатели и холодильные машины. Цикл Карно и его к. П. Д. Для идеального газа
- •Глава 10
- •§ 60. Силы и потенциальная энергия межмолекулярного взаимодействия
- •§61. Уравнение Ван-дер-Ваальса
- •§ 62. Изотермы Ван-дер-Ваальса и их анализ
- •§ 63. Внутренняя энергия реального газа
- •§ 64. Эффект Джоуля — Томсона
- •§ 65. Сжижение газов
- •§ 66. Свойства жидкостей. Поверхностное натяжение
- •§ 67. Смачивание
- •§ 68. Давление под искривленной поверхностью жидкости
- •§ 69. Капиллярные явления
- •§ 70. Твердые тела. Моно- и поликристаллы
- •§71. Типы кристаллических твердых тел
- •2. Физический признак кристаллов.
- •§ 72. Дефекты в кристаллах
- •§ 73. Теплоемкость твердых тел
- •§ 74. Испарение, сублимация, плавление и кристаллизация. Аморфные тела
- •§75. Фазовые переходы I и II рода
- •§ 76. Диаграмма состояния. Тройная точка
- •Глава 11
- •§ 77. Закон сохранения электрического заряда
- •§ 78. Закон Кулона
- •§ 79. Электростатическое поле. Напряженность электростатического поля
- •§ 80. Принцип суперпозиции электростатических полей, Поле диполя
- •§81. Теорема Гаусса для электростатического поля в вакууме
- •§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- •4. Поле объемно заряженного шара. Шар
- •§ 83. Циркуляция вектора напряженности электростатического поля
- •§ 84. Потенциал электростатического поля
- •§ 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности
- •§ 86. Вычисление разности потенциалов по напряженности поля
- •§ 87. Типы диэлектриков. Поляризация диэлектриков
- •§ 88. Поляризованность. Напряженность поля в диэлектрике
- •§ 89. Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике
- •§ 90. Условия на границе раздела двух диэлектрических сред
- •§91. Сегнетоэлектрики
- •§ 92. Проводники в электростатическом поле
- •§ 93. Электрическая емкость уединенного проводника
- •§ 94. Конденсаторы
- •§ 95. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля
- •4. Энергия электростатического поля.
- •Глава 12 Постоянный электрический ток
- •§ 96. Электрический ток, сила и плотность тока
- •§ 97. Сторонние силы. Электродвижущая сила и напряжение
- •§ 98. Закон Ома. Сопротивление проводников
- •§ 99. Работа и мощность тока. Закон Джоуля — Ленца
- •§ 100. Закон Ома для неоднородного участка цепи
- •§ 101. Правила Кирхгофа для разветвленных цепей
- •Глава 13
- •§ 102. Элементарная классическая теория электропроводности металлов
- •§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов
- •§ 104. Работа выхода электронов из металла
- •§ 105. Эмиссионные явления и их применение
- •§ 106. Ионизация газов. Несамостоятельный газовый разряд
- •§ 107. Самостоятельный газовый разряд и его типы
- •§ 108. Плазма и ее свойства
- •Глава 21
- •§ 165. Основные законы оптики. Полное отражение
- •§ 166. Тонкие линзы. Изображение предметов с помощью линз
- •§ 167. Аберрации (погрешности) оптических систем
- •§ 168. Основные фотометрические величины и их единицы
- •§ 169. Элементы электронной оптики
- •Глава 22
- •§ 170. Развитие представлений о природе света
- •§ 171. Когерентность и монохроматичность световых волн
- •§ 172. Интерференция света
- •§ 173. Методы наблюдения интерференции света
- •§ 174. Интерференция света в тонких пленках
- •2. Полосы равной толщины (интерференция от пластинки переменной толщины).
- •§ 175. Применение интерференции света
- •Глава 23
- •§176. Принцип Гюйгенса — Френеля
- •§ 177. Метод зон Френеля. Прямолинейное распространение света
- •§ 178. Дифракция Френеля на круглом отверстии и диске
- •§ 179. Дифракция Фраунгофера на одной щели
- •§ 180. Дифракция Фраунгофера на дифракционной решетке
- •§ 181. Пространственная решетка. Рассеяние света
- •§ 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов
- •§ 183. Разрешающая способность оптических приборов
- •§ 184. Понятие о голографии
- •Глава 26 Квантовая природа излучения
- •§197. Тепловое излучение и его характеристики
- •§ 198. Закон Кирхгофа
- •§ 199. Законы Стефана — Больцмана и смещения Вина
- •§ 200. Формулы Рэлея — Джинса и Планка
- •§201. Оптическая пирометрия.
- •1. Радиационная температура — это
- •§202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- •§ 203. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- •§ 204. Применение фотоэффекта
- •§ 205. Масса и импульс фотона. Давление света
- •§ 206. Эффект Комптона и его элементарная теория
- •§ 207. Диалектическое единство корпускулярных и волновых свойств электромагнитного излучения
- •7 Элементы физики
- •Глава 32
- •§251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
- •§ 252. Дефект массы и энергия связи ядра
- •§ 253. Спин ядра и его магнитный момент
- •§ 254. Ядерные силы. Модели ядра
- •§ 255. Радиоактивное излучение и его виды
- •§ 256. Закон радиоактивного распада. Правила смещения
- •§ 257. Закономерности -распада
- •§258. -Распад. Нейтрино
- •§ 259. Гамма-излучение и его свойства
- •§ 260. Резонансное поглощение -излучения (эффект Мёссбауэра)
- •§ 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
- •§ 262. Ядерные реакции и их основные типы
- •§ 264. Открытие нейтрона. Ядерные реакции под действием нейтронов
- •§ 265. Реакция деления ядра
- •§266. Цепная реакция деления
- •§267. Понятие о ядерной энергетике
- •§ 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
- •1.1. Электрический заряд. Закон Кулона
§81. Теорема Гаусса для электростатического поля в вакууме
Вычисление напряженности поля системы электрических зарядов с помощью принципа суперпозиции электростатических полей можно значительно упростить, используя выведенную немецким ученым К. Гауссом (1777—1855) теорему, определяющую поток вектора напряженности электрического поля через произвольную замкнутую поверхность.
В соответствии с формулой (79.3) поток вектора напряженности сквозь сферическую поверхность радиуса r, охватывающую точечный заряд Q, находящийся в ее центре (рис. 124),
Этот результат справедлив для замкнутой поверхности любой формы. Действительно, если окружить сферу (рис. 124) произвольной замкнутой поверхностью, то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.
Если замкнутая поверхность произвольной формы охватывает заряд (рис. 125), то при пересечении любой выбранной линии напряженности с поверхностью она то входит в нее, то выходит из нее. Нечетное число пересечений при вычислении потока в конечном счете сводится к одному пересечению, так как поток считается положительным, если линии напряженности выходят из поверхности, и отрицательным для линий, входящих
134
в поверхность. Если замкнутая поверхность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, входящих в поверхность, равно числу линий напряженности, выходящих из нее.
Таким образом, для поверхности любой формы, если она замкнута и заключает в себя точечный заряд Q, поток вектора Е будет равен Q/0, т. е.
Знак
потока совпадает со знаком заряда Q.
Рассмотрим
общий случай произвольной поверхности,
окружающей n
зарядов.
В соответствии с принципом суперпозиции
(80.2) напряженность Е
поля, создаваемого всеми зарядами,
равна сумме напря-женностей Еi,
создаваемых каждым зарядом в
отдельности:;.
Поэтому
Согласно (81.1), каждый из интегралов, стоящий под знаком суммы, равен Qi/0. Следовательно,
Формула (81.2) выражает теорему Гаусса для электростатического поля в вакууме: поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на 0. Эта теорема выведена математически для векторного поля любой природы русским математиком М. В. Остроградским (1801 —1862), а затем независимо от него применительно к электростатическому полю — К. Гауссом.
В общем случае электрические заряды могут быть «размазаны» с некоторой
объемной плотностью =dQ/dV, различной
в разных местах пространства. Тогда суммарный заряд, заключенный внутри замкнутой поверхности S, охватывающей некоторый объем V,
Используя формулу (81.3), теорему Гаусса (81.2) можно записать так:
§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
1. Поле равномерно заряженной бесконечной плоскости. Бесконечная плоскость (рис. 126) заряжена с постоянной поверхностной плотностью + (=dQ/dS—заряд, приходящийся на единицу поверхности). Линии напряженности перпендикулярны рассматриваемой плоскости и направлены от нее в обе стороны. В качестве замкнутой поверхности мысленно построим цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности (cos=0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания En совпадает с Е), т.е. равен 2ES. Заряд, заключенный внутри построенной цилиндрической поверхности, равен S. Согласно теореме Гаусса (81.2), 2ES = S/0, откуда
E=/(20). (82.1)
Из формулы (82.1) вытекает, что Е не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях одинакова по модулю, ины-
135
ми словами, поле равномерно заряженной плоскости однородно.
2. Поле двух бесконечных параллельных разноименно заряженных плоскостей (рис. 127). Пусть плоскости заряжены равномерно разноименными зарядами с поверхностными плотностями + и -. Поле таких плоскостей найдем как суперпозицию полей, создаваемых каждой из плоскостей в отдельности. На рисунке верхние стрелки соответствуют полю от положительно заряженной плоскости, нижние — от отрицательной плоскости. Слева и справа от плоскостей поля вычитаются (линии напряженности направлены навстречу друг другу), поэтому здесь напряженность поля E=0. В области между плоскостями E=E++E- (E+ и E-определяются по формуле (82.1)), поэтому результирующая напряженность
E=/0. (82.2)
Таким образом, результирующая напряженность поля в области между плоскостями описывается формулой (82.2), а вне объема, ограниченного плоскостями, равна нулю.
3. Поле равномерно заряженной сферической поверхности. Сферическая поверхность радиуса R с общим зарядом Q заряжена равномерно с поверхностной плотностью +0. Благодаря равномерному распределению заряда по поверхности поле, создаваемое им, обладает сферической симметрией.
Поэтому линии напряженности направлены радиально (рис. 128). Построим мысленно сферу радиуса r, имеющую общий центр с заряженной сферой. Если r>R, то внутрь поверхности попадает весь заряд Q, создающий рассматриваемое поле, и, по теореме Гаусса (81.2), 4r2E=Q/0, откуда
При r>R поле убывает с расстоянием r по такому же закону, как у точечного заряда. График зависимости E от r приведен на рис. 129. Если r'<R, то замкнутая поверхность не содержит внутри зарядов, поэтому внутри равномерно заряженной сферической поверхности электростатическое поле отсутствует (E=0).