
- •Глава 1
- •§ 1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения
- •§ 2. Скорость
- •§ 3. Ускорение и его составляющие
- •§ 4. Угловая скорость и угловое ускорение
- •Глава 2
- •§ 5. Первый закон Ньютона. Масса. Сила
- •§6. Второй закон Ньютона
- •§ 7. Третий закон Ньютона
- •§ 8. Силы трения
- •§ 9. Закон сохранения импульса. Центр масс
- •§ 10. Уравнение движения тела переменной массы
- •Глава 3 Работа и энергия
- •§11. Энергия, работа, мощность
- •§ 12. Кинетическая и потенциальная энергии
- •§ 13. Закон сохранения энергии
- •§ 14. Графическое представление энергии
- •§ 15. Удар абсолютно упругих и неупругих тел
- •Глава 4
- •§ 16. Момент инерции
- •§ 17. Кинетическая энергия вращения
- •§ 18. Момент силы. Уравнение динамики вращательного движения твердого тела
- •§ 19. Момент импульса и закон его сохранения
- •§ 20. Свободные оси. Гироскоп
- •§21. Деформации твердого тела
- •Глава 5
- •§ 22. Законы Кеплера.
- •§ 23. Сила тяжести и вес. Невесомость
- •§ 24. Поле тяготения и его напряженность
- •§ 25. Работа в поле тяготения. Потенциал поля тяготения
- •§ 26. Космические скорости
- •§ 27. Неинерциальные системы отсчета. Силы инерции
- •Глава 6
- •§ 28. Давление в жидкости и газе
- •§ 29. Уравнение неразрывности
- •§ 30. Уравнение Бернулли и следствия из него
- •§ 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей
- •§ 32. Методы определения вязкости
- •§ 33. Движение тел в жидкостях и газах
- •Глава 7
- •§ 34. Преобразования Галилея. Механический принцип относительности
- •§ 35. Постулаты специальной (частной) теории относительности
- •§ 36. Преобразования Лоренца
- •§ 37. Следствия из преобразований Лоренца
- •§ 38. Интервал между событиями
- •§ 39. Основной закон релятивистской динамики материальной точки
- •§ 40. Закон взаимосвязи массы и энергии
- •Глава 9
- •§ 50. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- •§51. Первое начало термодинамики
- •§ 52. Работа газа при изменении его объема
- •§ 53. Теплоемкость
- •§ 54. Применение первого начала термодинамики к изопроцессам
- •§ 55. Адиабатический процесс. Политропный процесс
- •§56. Круговой процесс (цикл). Обратимые и необратимые процессы
- •§ 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью
- •§ 58. Второе начало термодинамики
- •§ 59. Тепловые двигатели и холодильные машины. Цикл Карно и его к. П. Д. Для идеального газа
- •Глава 10
- •§ 60. Силы и потенциальная энергия межмолекулярного взаимодействия
- •§61. Уравнение Ван-дер-Ваальса
- •§ 62. Изотермы Ван-дер-Ваальса и их анализ
- •§ 63. Внутренняя энергия реального газа
- •§ 64. Эффект Джоуля — Томсона
- •§ 65. Сжижение газов
- •§ 66. Свойства жидкостей. Поверхностное натяжение
- •§ 67. Смачивание
- •§ 68. Давление под искривленной поверхностью жидкости
- •§ 69. Капиллярные явления
- •§ 70. Твердые тела. Моно- и поликристаллы
- •§71. Типы кристаллических твердых тел
- •2. Физический признак кристаллов.
- •§ 72. Дефекты в кристаллах
- •§ 73. Теплоемкость твердых тел
- •§ 74. Испарение, сублимация, плавление и кристаллизация. Аморфные тела
- •§75. Фазовые переходы I и II рода
- •§ 76. Диаграмма состояния. Тройная точка
- •Глава 11
- •§ 77. Закон сохранения электрического заряда
- •§ 78. Закон Кулона
- •§ 79. Электростатическое поле. Напряженность электростатического поля
- •§ 80. Принцип суперпозиции электростатических полей, Поле диполя
- •§81. Теорема Гаусса для электростатического поля в вакууме
- •§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- •4. Поле объемно заряженного шара. Шар
- •§ 83. Циркуляция вектора напряженности электростатического поля
- •§ 84. Потенциал электростатического поля
- •§ 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности
- •§ 86. Вычисление разности потенциалов по напряженности поля
- •§ 87. Типы диэлектриков. Поляризация диэлектриков
- •§ 88. Поляризованность. Напряженность поля в диэлектрике
- •§ 89. Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике
- •§ 90. Условия на границе раздела двух диэлектрических сред
- •§91. Сегнетоэлектрики
- •§ 92. Проводники в электростатическом поле
- •§ 93. Электрическая емкость уединенного проводника
- •§ 94. Конденсаторы
- •§ 95. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля
- •4. Энергия электростатического поля.
- •Глава 12 Постоянный электрический ток
- •§ 96. Электрический ток, сила и плотность тока
- •§ 97. Сторонние силы. Электродвижущая сила и напряжение
- •§ 98. Закон Ома. Сопротивление проводников
- •§ 99. Работа и мощность тока. Закон Джоуля — Ленца
- •§ 100. Закон Ома для неоднородного участка цепи
- •§ 101. Правила Кирхгофа для разветвленных цепей
- •Глава 13
- •§ 102. Элементарная классическая теория электропроводности металлов
- •§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов
- •§ 104. Работа выхода электронов из металла
- •§ 105. Эмиссионные явления и их применение
- •§ 106. Ионизация газов. Несамостоятельный газовый разряд
- •§ 107. Самостоятельный газовый разряд и его типы
- •§ 108. Плазма и ее свойства
- •Глава 21
- •§ 165. Основные законы оптики. Полное отражение
- •§ 166. Тонкие линзы. Изображение предметов с помощью линз
- •§ 167. Аберрации (погрешности) оптических систем
- •§ 168. Основные фотометрические величины и их единицы
- •§ 169. Элементы электронной оптики
- •Глава 22
- •§ 170. Развитие представлений о природе света
- •§ 171. Когерентность и монохроматичность световых волн
- •§ 172. Интерференция света
- •§ 173. Методы наблюдения интерференции света
- •§ 174. Интерференция света в тонких пленках
- •2. Полосы равной толщины (интерференция от пластинки переменной толщины).
- •§ 175. Применение интерференции света
- •Глава 23
- •§176. Принцип Гюйгенса — Френеля
- •§ 177. Метод зон Френеля. Прямолинейное распространение света
- •§ 178. Дифракция Френеля на круглом отверстии и диске
- •§ 179. Дифракция Фраунгофера на одной щели
- •§ 180. Дифракция Фраунгофера на дифракционной решетке
- •§ 181. Пространственная решетка. Рассеяние света
- •§ 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов
- •§ 183. Разрешающая способность оптических приборов
- •§ 184. Понятие о голографии
- •Глава 26 Квантовая природа излучения
- •§197. Тепловое излучение и его характеристики
- •§ 198. Закон Кирхгофа
- •§ 199. Законы Стефана — Больцмана и смещения Вина
- •§ 200. Формулы Рэлея — Джинса и Планка
- •§201. Оптическая пирометрия.
- •1. Радиационная температура — это
- •§202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- •§ 203. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- •§ 204. Применение фотоэффекта
- •§ 205. Масса и импульс фотона. Давление света
- •§ 206. Эффект Комптона и его элементарная теория
- •§ 207. Диалектическое единство корпускулярных и волновых свойств электромагнитного излучения
- •7 Элементы физики
- •Глава 32
- •§251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
- •§ 252. Дефект массы и энергия связи ядра
- •§ 253. Спин ядра и его магнитный момент
- •§ 254. Ядерные силы. Модели ядра
- •§ 255. Радиоактивное излучение и его виды
- •§ 256. Закон радиоактивного распада. Правила смещения
- •§ 257. Закономерности -распада
- •§258. -Распад. Нейтрино
- •§ 259. Гамма-излучение и его свойства
- •§ 260. Резонансное поглощение -излучения (эффект Мёссбауэра)
- •§ 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
- •§ 262. Ядерные реакции и их основные типы
- •§ 264. Открытие нейтрона. Ядерные реакции под действием нейтронов
- •§ 265. Реакция деления ядра
- •§266. Цепная реакция деления
- •§267. Понятие о ядерной энергетике
- •§ 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
- •1.1. Электрический заряд. Закон Кулона
§ 54. Применение первого начала термодинамики к изопроцессам
Среди равновесных процессов, происходящих с термодинамическими системами, выделяются изопроцессы, при которых один из основных параметров состояния сохраняется постоянным.
Изохорный процесс (V = const). Диаграмма этого процесса (изохора) в координатах р, V изображается прямой, параллельной оси ординат (рис. 81), где процесс 1—2 есть изохорное нагревание, а 1—3 — изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т. е.
A=pdV = 0.
Как уже указывалось в § 53, из первого начала термодинамики (Q=dU+A) для изохорного процесса следует, что вся теплота, сообщаемая газу, идет на увеличение его внутренней энергии:
Q =dU
Согласно формуле (53.4), dUm = CvdT.
Тогда для произвольной массы газа получим
Изобарный процесс (р=const). Диаграмма этого процесса (изобара) в координатах р, V изображается прямой, параллельной оси V
. При изобарном процессе работа газа (см. (52.2)) при расширении объема от V1 до V2 равна
и определяется площадью прямоугольника, выполненного в цвете на рис. 82. Если использовать уравнение (42.5) Клапейрона — Менделеева для выбранных нами двух состояний, то
откуда
Тогда выражение (54.2) для работы изобарного расширения примет вид
Из этого выражения вытекает физический смысл молярной газовой постоянной R: если T2-T1=1К, то для 1 моля газа R=А, т. е. R численно равна работе изобарного расширения 1 моля идеального газа при нагревании его на 1 К.
В изобарном процессе при сообщении газу массой от количества теплоты
его внутренняя энергия возрастает на величину (согласно формуле (53.4))
При этом газ совершит работу, определяемую выражением (54.3).
94
Изотермический процесс (T=const). Как уже указывалось в § 41, изотермический процесс описывается законом Бойля — Мариотта:
pV=const.
Диаграмма этого процесса (изотерма) в координатах р, V представляет собой гиперболу (см. рис.60), расположенную на диаграмме тем выше, чем выше температура, при которой происходил процесс. Исходя из выражений (52.2) и (42.5) найдем работу изотермического расширения газа:
Так как при T=const внутренняя энергия идеального газа не изменяется:
то из первого начала термодинамики (Q =dU+A) следует, что для изотермического процесса
Q=A,
т. е. все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил:
Следовательно, для того чтобы при работе расширения температура не уменьшалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения.
§ 55. Адиабатический процесс. Политропный процесс
Адиабатическим называется процесс, при котором отсутствует теплообмен (Q=0) между системой и окружающей средой. К адиабатическим процессам можно от-
нести все быстропротекающие процессы. Например, адиабатическим процессом можно считать процесс распространения звука в среде, так как скорость распространения звуковой волны настолько велика, что обмен энергией между волной и средой произойти не успевает. Адиабатические процессы применяются в двигателях внутреннего сгорания (расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т. д.
Из первого начала термодинамики (Q=dU+A) для адиабатического процесса следует, что
A=-dU, (55.1)
т. е. внешняя работа совершается за счет изменения внутренней энергии системы.
Используя выражения (52.1) и (53.4), для произвольной массы газа перепишем уравнение (55.1) в виде
Продифференцировав уравнение состояния для идеального газа pV=(m/M)RT, получим
Исключим из (55.2) и (55.3) температуру Т:
Разделив переменные и учитывая, что Ср/Сv = (см. (53.8)), найдем
dp/p=-dV/V.
Интегрируя это уравнение в пределах от р1 до р2 и соответственно от V1 до V2, а затем потенцируя, придем к выражению
p2/pl=(V1/V2).
или
p1v1 = p2v2.
Так как состояния 1 и 2 выбраны произвольно, то можно записать
рV=const. (55.4)
95
Полученное выражение есть уравнение адиабатического процесса, называемое также уравнением Пуассона.
Для перехода к переменным Т, V или р, Т исключим из (55.4) с помощью уравнения Клапейрона — Менделеева
соответственно давление или объем:
Выражения (55.4) — (55.6) представляют собой уравнения адиабатического процесса. В этих уравнениях безразмерная величина (см. (53.8) и (53.2))
называется показателем адиабаты (или коэффициентом Пуассона). Для одноатомных газов (Ne, He и др.), достаточно хорошо удовлетворяющих условию идеальности, i = 3, =1,67. Для двухатомных газов (Н2, N2, O2 и др.) i= 5, =1,4. Значения , вычисленные по формуле (55.7), хорошо подтверждаются экспериментом.
Диаграмма адиабатического процесса (адиабата) в координатах р, V изображается гиперболой (рис.83). На рисунке видно, что адиабата (pV=const) более крута, чем изотерма (pV=const). Это объясняется тем, что при адиабатическом сжатии 1—3 увеличение давления газа обусловлено не только уменьшением его объема, как при изотермическом сжатии, но и повышением температуры.
Вычислим работу, совершаемую газом в адиабатическом процессе. Запишем уравнение (55.2) в виде
Если газ адиабатически расширяется от объема V1 до V2, то его температура уменьшается от T1 до T2 и работа расширения идеального газа
Применяя те же приемы, что и при выводе формулы (55.5), выражение (55.8) для работы при адиабатическом расширении можно преобразовать к виду
Работа, совершаемая газом при адиабатическом расширении 1—2 (определяется площадью, выполненной в цвете на рис. 83), меньше, чем при изотермическом. Это объясняется тем, что при адиабатическом расширении происходит охлаждение газа, тогда как при изотермическом — температура поддерживается постоянной за счет притока извне эквивалентного количества теплоты.
Рассмотренные изохорный, изобарный, изотермический и адиабатический процессы имеют общую особенность — они происходят при постоянной теплоемкости. В первых двух процессах теплоемкости соответственно равны Cv и Ср, в изотермическом процессе (dT=0) теплоемкость равна ±, в адиабатическом (Q=0) теплоемкость равна нулю. Процесс, в котором теплоемкость остается постоянной, называется политропным.
Исходя из первого начала термодинамики при условии постоянства теплоемкости (C = const) можно вывести уравнение политропы:
pVn = const, (55.9)
96
где n=(C-Ср)/(С-Cv) — показатель политропы. Очевидно, что при С = 0, n= из (55.9) получается уравнение адиабаты; при С=, n =1 —уравнение изотермы; при С=СР, n = 0 — уравнение изобары, при С = Сv, n=± —уравнение изохоры. Таким образом, все рассмотренные процессы являются частными случаями политропного процесса.