Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

topology / Многообразия / Проблема Пуанкаре 3

.doc
Скачиваний:
46
Добавлен:
20.03.2015
Размер:
67.07 Кб
Скачать

Гипотеза Пуанкаре выдвинута еще в начале XX в. французским математиком Анри Пуанкаре. Чтобы сформулировать ее, дадим

Определение. Топологическое пространство X называется односвязным, если оно линейно связно и всякое непрерывное отображение X окружности в пространство X можно продолжить до непрерывного отображения всего круга . Не трудно видеть, что сфера односвязна при n2.

Гипотеза Пуанкаре. Всякое замкнутое односвязное трехмерное многообразие гомеоморфно трехмерной сфере.

Аналоги гипотезы Пуанкаре, касающиеся многообразий размерности 4 и больше, доказаны. Более того, получена топологическая классификация вообще всех замкнутых односвязных четырехмерных многообразий.

Это интересно: Почти 100 лет назад Пуанкаре установил, что двумерная сфера односвязна, и предположил, что трехмерная сфера тоже односвязна.

Другими словами, гипотеза Пуанкаре утверждает, что всякое односвязное замкнутое трехмерное многообразие гомеоморфно трехмерной сфере. Гипотеза сформулирована Пуанкаре в 1904 г. Обобщенная гипотеза Пуанкаре утверждает, что для любого n всякое многообразие размерности n гомотопически эквивалентно сфере размерности n тогда и только тогда, когда оно гомеоморфно ей. Для пояснения используют такую картинку: если обмотать яблоко резиновой лентой, то в принципе, стягивая ленту, можно сжать яблоко в точку. Если же обмотать такой же лентой пончик (пирожок с дыркой в середине), то в точку его сжать нельзя без разрыва или пончика, или резины. В таком контексте яблоко называют «односвязной» фигурой, пончик же не односвязен.

Жюль Анри Пуанкаре открыл специальную теорию относительности одновременно с Эйнштейном (1905 г.) и признан одним из величайших математиков за всю историю человечества.

Гипотеза Пуанкаре оставалась недоказанной на протяжении всего двадцатого столетия. В математическом мире она приобрела статус, аналогичный статусу Великой теоремы Ферма.

За доказательство гипотезы Пуанкаре Математический институт им. Клея присудил премию в миллион долларов, что может показаться удивительным: ведь речь идет об очень частном, малоинтересном факте. На самом деле, для математиков важны не столько свойства трехмерной поверхности, сколько факт трудности самого доказательства. В этой задаче в концентрированном виде сформулировано то, что не удавалось доказать с помощью имевшихся ранее идей и методов геометрии и топологии. Она позволяет как бы заглянуть на уровень глубже, в тот пласт задач, который можно будет решить только с помощью идей «нового поколения». Как и в ситуации с теоремой Ферма, выяснилось, что гипотеза Пуанкаре есть частный случай гораздо более общего утверждения о геометрических свойствах произвольных трехмерных поверхностей – гипотезы геометризации Тёрстона (Thurston's Geometrization Conjecture). Поэтому усилия математиков были направлены не на решение этого частного случая, а на построение нового математического подхода, который способен справляться с такими задачами.

Российский математик Григорий Перельман, сотрудник лаборатории геометрии и топологии Санкт-Петербургского отделения Математического института им. В.А. Стеклова, утверждает, что доказал гипотезу Пуанкаре, то есть решил одну из самых знаменитых нерешенных математических задач. Необычным был способ, который Перельман избрал для обнародования своего доказательства. Вместо того чтобы опубликовать его в солидном научном журнале, что, кстати, было обязательным условием для присуждения приза в миллион долларов, Перельман разместил свою работу на одном из архивов Интернета. Хотя доказательство заняло всего 61 страницу, оно произвело сенсацию в научном мире.

Научный мир рукоплескал гению, обещая золотые горы и почетные титулы. Американский Институт математики Клея был готов присудить ему награду в $1 миллион. Никто не сомневался, что Всемирный конгресс математиков, назовет Перельмана победителем. Кстати, как известно, математики не входят в число учёных, награждаемых Нобелевской премией. Злые языки утверждают, что этот факт не случаен. Ведь, по слухам, именно математик попал в немилость знаменитому шведу Альфреду Нобелю, отбив у него любимую девушку в юности. Между тем российский гений отказался от миллиона, так и не опубликовав свое открытие в специализированных изданиях, уволился из Математического института им. Стеклова РАН, ушел в затворничество и, на церемонии вручения награды, которую вручал король Испании Хуан Карлос I, не появился. Он никак не отреагировал на сообщение о награде и приглашение ее получить, а как говорят знакомые: гений "ушел в леса" по грибы под Санкт-Петербургом.

[http://www.znayki.com/forum/index.php?topic=34.0]

Ученые считают, что 38-летний российский математик Григорий Перельман предложил верное решение проблемы Пуанкаре. Об этом на научном фестивале в Эксетере (Великобритания) заявил профессор математики Стэнфордского университета Кит Девлин.

Проблема (ее также называют задачей или гипотезой) Пуанкаре относится к числу семи важнейших математических проблем, за решение каждой из которых Математический институт Клэя (Clay Mathematics Institute) назначил премию в один миллион долларов. Именно это и привлекло столь широкое внимание к результатам, полученным Григорием Перельманом, сотрудником лаборатории математической физики Санкт-Петербургского отделения Математического института имени Стеклова .

Ученые всего мира узнали о достижениях Перельмана из двух препринтов (статей, предваряющих полноценную научную публикацию), размещенных автором в ноябре 2002-го и марте 2003 года на сайте архива предварительных работ Лос-Аламосской научной лаборатории.

Согласно правилам, принятым Научным консультативным советом института Клэя, новая гипотеза должна быть опубликована в специализированном журнале, имеющем "международную репутацию". Кроме того, по правилам Института, решение о выплате приза принимает, в конечном счёте, "математическое сообщество": доказательство не должно быть опровергнуто в течение двух лет после публикации. Проверкой каждого доказательства занимаются математики в разных странах мира.

Проблема Пуанкаре

Проблема Пуанкаре относится к области так называемой топологии многообразий - особым образом устроенных пространств, имеющих разную размерность. Двухмерные многообразия можно наглядно представить себе, например, на примере поверхности трехмерных тел − сферы (поверхности шара) или тора (поверхности бублика).

Легко вообразить, что произойдет с воздушным шариком, если его деформировать (изгибать, скручивать, тянуть, сжимать, пережимать, сдувать или надувать). Ясно, что при всех вышеперечисленных деформациях шарик будет изменять свою форму в широких пределах. Однако мы никогда не сможем превратить шарик в бублик (или наоборот) без нарушения непрерывности его поверхности, то есть не разрывая. В этом случае топологи говорят, что сфера (шарик) негомеоморфна тору (бублику). Это означает, что данные поверхности невозможно отобразить одну на другую. Говоря простым языком, сфера и тор различны по своим топологическим свойствам. А поверхность воздушного шарика при всевозможных его деформациях гомеоморфна сфере, равно как поверхность спасательного круга - тору. Иными словами, любая замкнутая двумерная поверхность, не имеющая сквозных отверстий, обладает теми же топологическими свойствами, что и двухмерная сфера.

Проблема Пуанкаре утверждает то же самое для трехмерных многообразий (для двухмерных многообразий, таких как сфера, это положение было доказано еще в XIX веке). Как заметил французский математик, одно из важнейших свойств двухмерной сферы состоит в том, что любая замкнутая петля (например, лассо), лежащая на ней, может быть стянута в одну точку, не покидая при этом поверхности. Для тора это справедливо не всегда: петля, проходящая через его отверстие, стянется в точку либо при разломе тора, либо при разрыве самой петли. В 1904 году Пуанкаре высказал предположение, что если петля может стягиваться в точку на замкнутой трехмерной поверхности, то такая поверхность гомеоморфна трехмерной сфере. Доказательство этой гипотезы оказалось чрезвычайно сложной задачей.

Сразу уточним: упомянутая нами формулировка проблемы Пуанкаре говорит вовсе не о трехмерном шаре, который мы можем представить себе без особого труда, а о трехмерной сфере, то есть о поверхности четырехмерного шара, который представить себе уже гораздо труднее. Но в конце 1950-х годов неожиданно выяснилось, что с многообразиями высоких размерностей работать гораздо легче, чем с трех- и четырехмерными. Очевидно, отсутствие наглядности - далеко не главная трудность, с которой сталкиваются математики в своих исследованиях.

Задача, подобная проблеме Пуанкаре, для размерностей 5 и выше была решена в 1960 году Стивеном Смэйлом (Stephen Smale), Джоном Стэллингсом (John Stallings) и Эндрю Уоллесом (Andrew Wallace). Подходы, использованные этими учеными, оказались, однако, неприменимы к четырехмерным многообразиям. Для них проблема Пуанкаре была доказана лишь в 1981 году Майклом Фридманом (Michael Freedman). Трехмерный же случай оказался самым сложным; его решение и предлагает Григорий Перельман.

Необходимо отметить, что у Перельмана есть соперник. В апреле 2002 года профессор математики британского университета Саутгемптон Мартин Данвуди предложил свой метод решения проблемы Пуанкаре и теперь ожидает вердикт от института Клэя.

Специалисты считают, что решение проблемы Пуанкаре позволит сделать серьезный шаг в математическом описании физических процессов в сложных трехмерных объектах и даст новый импульс развитию компьютерной топологии. Метод, который предлагает Григорий Перельман, приведет к открытию нового направления в геометрии и топологии. Петербургский математик вполне может претендовать на премию Филдса (аналог Нобелевской премии, которую по математике не присуждают).

Между тем, некоторые находят поведение Григория Перельмана странным. Вот что пишет британская газета "Гардиан": "Скорее всего, подход Перельмана к разгадке проблемы Пуанкаре верный. Но не все так просто. Перельман не предоставляет доказательств того, что работа издана в качестве полноценной научной публикации (препринты таковой не считаются). А это необходимо, если человек хочет получить награду от института Клэя. Кроме того, он вообще не проявляет интереса к деньгам".

Видимо, для Григория Перельмана, как для настоящего ученого, деньги - не главное. За решение любой из так называемых "задач тысячелетия" истинный математик продаст душу дьяволу.

ГРИГОРИЙ ПЕРЕЛЬМАН

Родился 13 июня 1966 года в Ленинграде, в семье служащих. Окончил знаменитую среднюю школу № 239 с углубленным изучением математики. В 1982 году в составе команды советских школьников участвовал в Международной математической олимпиаде, проходившей в Будапеште. Был без экзаменов зачислен на матмех Ленинградского государственного университета. Побеждал на факультетских, городских и всесоюзных студенческих математических олимпиадах. Получал Ленинскую стипендию. Окончив университет, Перельман поступил в аспирантуру при Санкт-Петербургском отделении Математического института им.В.А.Стеклова. Кандидат физико-математических наук. Работает в лаборатории математической физики.

[http://lenta.ru/articles/2004/09/12/poincare/]

Китайские математики опубликовали полное доказательство гипотезы Пуанкаре, сформулированной в 1904 году, передает новостное агентство Xinhua. Гипотеза, касающаяся классификации многомерных поверхностей (а точнее, многообразий), входила в число "проблем тысячелетия", за решение каждой из которых американский Институт Клэя назначил награду в миллион долларов.

Согласно Пуанкаре, любая замкнутая трехмерная "поверхность без дыр" (односвязное многообразие) эквивалентна трехмерной сфере, то есть поверхности четырехмерного шара. Сам Пуанкаре, автор математического аппарата эйнштейновской теории, представил первое обоснование, но позже обнаружил в собственных рассуждениях ошибку. Гипотезу в такой формулировке доказал в 2003 году российский математик Григорий Перельман, 70-страничную работу которого эксперты проверяют до сих пор. Другие случаи (размерности четыре и выше) были рассмотрены ранее.

По словам авторов, новая 300-страничная статья в Asian Journal of Mathematics не является независимой и опирается в первую очередь на результаты Перельмана. Чжу Сипин и Цао Хуайдун утверждают, что теперь ликвидировали ряд трудностей, способы преодоления которых Перельманом были только намечены. Известно, что в работе над доказательством также участвовал Шин-Тунь Яу, топологические труды которого (в частности, теория многообразий Калаби-Яу) считаются ключевыми для современной теории струн. Новая работа, отмечают специалисты, также потребует длительной перепроверки.

[http://www.inauka.ru/news/article64629.html]

Александров А.Д., Нецветаев Н.Ю. Геометрия. М.: Наука, 1990

[http://alexandr4784.narod.ru/antoppdf/519-527.pdf]

[http://alexandr4784.narod.ru/antoppdf/527-532.pdf]

[http://www.ega-math.narod.ru/Nquant/Space.htm]

Приложение к реферату 2: [http://wsyachina.narod.ru/astronomy/configuration_universe.html]