Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsia_3_po_gemodinamike.doc
Скачиваний:
120
Добавлен:
18.03.2015
Размер:
672.26 Кб
Скачать

Обменные сосуды (капилляры)

Частично транспорт веществ происходит также в артериолах и венулах. Через стенку артериол легко диффундирует кислород (в частности, этот путь играет важную роль в снабжении кислородом нейронов мозга), а через люки венул (межклеточные поры диаметром 10-20 нм) осуществляется диффузия из крови белковых молекул, которые в дальнейшем попадают в лимфу.

Гистологически, по строению стенки, выделяют три типа капилляров.

Сплошные (соматические) капилляры. Эндотелиоциты их лежат на базальной мембране, плотно прилегая друг к другу, межклеточные щели между ними имеют ширину 4-5 нм (межэндотелиальные поры). Через поры такого диаметра проходят вода, водорастворимые неорганические и низкомолекулярные органические вещества (ионы, глюкоза, мочевина), а для более крупных водорастворимых молекул стенка капилляров является барьером (гистогематическим, гематоэнцефалическим). Этот тип капилляров представлен в скелетных мышцах, коже, лёгких, центральной нервной системе.

Окончатые (висцеральные) капилляры. От сплошных капилляров отличаются тем, что в эндотелиоцитах есть фенестры (окна) диаметром 20-40 нм и более, образованные в результате слияния апикальной и базальной фосфолипидных мембран. Через фенестры могут проходить крупные органические молекулы и белки, необходимые для деятельности клеток или образующиеся в результате неё. Капилляры этого типа находятся в слизистой оболочке желудочно-кишечного тракта, в почках, железах внутренней и внешней секреции.

Несплошные (синусоидные) капилляры. У них нет базальной мембраны, а межклеточные поры имеют диаметр до 10-15 нм. Такие капилляры имеются в печени, селезёнке, красном костном мозге; они хорошо проницаемы для любых веществ и даже для форменных элементов крови, что связано с функцией соответствующих органов.

Шунтирующие сосуды

К ним относят артериоловенулярные анастомозы. Их функции — шунтирование кровотока. Истинные анатомические шунты (артериоловенулярные анастомозы) есть не во всех органах. Наиболее типичны эти шунты для кожи: при необходимости уменьшить теплоотдачу кровоток по системе капилляров прекращается и кровь (тепло) сбрасывается по шунтам из артериальной системы в венозную. В других тканях функцию шунтов при определённых условиях могут выполнять магистральные капилляры и даже истинные капилляры (функциональное шунтирование). В этом случае также уменьшается транскапиллярный поток тепла, воды, других веществ и увеличивается транзитный перенос в венозную систему. В основе функционального шунтирования лежит несоответствие между скоростями конвективного и транскапиллярного потока веществ. Например, в случае повышения линейной скорости кровотока в капиллярах некоторые вещества могут не успеть продиффундировать через стенку капилляра и с потоком крови сбрасываются в венозное русло; прежде всего это касается водорастворимых веществ, особенно медленно диффундирующих. Кислород также может шунтироваться при высокой линейной скорости кровотока в коротких капиллярах.

Емкостные (аккумулирующие) сосуды

Это посткапиллярные венулы, венулы, мелкие вены, венозные сплетения и специализированные образования — синусоиды селезенки. Их общая ёмкость составляет около 50 % всего объема крови, содержащейся в сердечно-сосудистой системе. Функции этих сосудов связаны со способностью изменять свою ёмкость, что обусловлено рядом морфологических и функциональных особенностей емкостных сосудов.

Посткапиллярные венулы образуются при объединении нескольких капилляров, диаметр их около 20 мкм, они в свою очередь объединяются в венулы диаметром 40—50 мкм. Венулы и вены широко анастомозируют друг с другом, образуя венозные сети большой ёмкости. Ёмкость их может меняться пассивно под давлением крови в результате высокой растяжимости венозных сосудов и активно, под влиянием сокращения гладких мышц, которые имеются в венулах диаметром 40—50 мкм, а в более крупных сосудах образуют непрерывный слой. В замкнутой сосудистой системе изменение ёмкости одного отдела влияет на объем крови в другом, поэтому изменения ёмкости вен влияют на распределение крови во всей системе кровообращения, в отдельных регионах и микрорегионах. Емкостные сосуды регулируют наполнение («заправку») сердечного насоса, а следовательно, и сердечный выброс. Они демпфируют резкие изменения объема крови, направляемой в полые вены, например, при ортоклиностатических перемещениях человека, осуществляют временное (за счёт снижения скорости кровотока в емкостных сосудах региона) или длительное (синусоиды селезенки) депонирование крови, регулируют линейную скорость органного кровотока и давление крови в капиллярах микрорегионов, т.е. влияют на процессы диффузии и фильтрации.

Венулы и вены богато иннервированы симпатическими волокнами. Перерезка нервов или блокада адренорецепторов приводят к расширению вен, что может существенно увеличить площадь поперечного сечения, а значит и ёмкость венозного русла, которая может возрастать на 20 %. Эти изменения свидетельствуют о наличии нейрогенного тонуса емкостных сосудов. При стимулировании адренергических нервов из емкостных сосудов изгоняется до 30 % объема крови, содержащейся в них, ёмкость вен уменьшается. Пассивные изменения ёмкости вен могут возникать при сдвигах трансмурального давления, например, в скелетных мышцах после интенсивной работы, в результате снижения тонуса мышц и отсутствия их ритмической деятельности; при переходе из положения лежа в положение стоя под влиянием гравитационного фактора (при этом увеличивается емкость венозных сосудов ног и брюшной полости, что может сопровождаться падением системного артериального давления).

Временное депонирование связано с перераспределением крови между емкостными сосудами и сосудами сопротивления в пользу емкостных и снижением линейной скорости циркуляции. В состоянии покоя до 50% объема крови функционально выключено из кровообращения: в венах подсосочкового сплетения кожи может находиться до 1 л крови, в печеночных — 1 л, в лёгочных — 0,5 л. Длительное депонирование — это депонирование крови в селезёнке в результате функционирования специализированных образований — синусоидов (истинных депо), в которых кровь может задерживаться на длительное время и по мере необходимости выбрасываться в кровоток.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]