Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Деловая игра А4 новый.doc
Скачиваний:
61
Добавлен:
18.03.2015
Размер:
1.64 Mб
Скачать

2.2. Корреляционное поле

Анализ взаимосвязи начинается с графического представления результатов измерений в прямоугольной системе координат. Предположим, что у шести испытуемых зарегистрирован такой показатель, как число подтягиваний на перекладине, до начала подготовительного периода тренировки (X) и после его окончания (Y). Запишем результаты измерений:

№ испытуемого

X

Y

1

4

6

2

6

10

3

11

12

4

10

12

5

8

10

6

8

8

Для этих результатов построим график, на оси абсцисс которого отложим результаты X, а на оси ординат – результаты Y. Таким образом, каждая пара результатов в прямоугольной системе координат будет отображаться точкой (рис. 3.1).

Рисунок 3.1 – Корреляционное поле (линейная зависимость)

Такая графическая зависимость называется диаграммой рассеивания или корреляционным полем.

Визуальный анализ графика позволяет выявить форму зависимости (по крайней мере, сделать предположение). В данном случае эта форма близка к обычной геометрической фигуре – эллипсу. Такую форму мы будем называть линейной зависимостью или линейной формой взаимосвязи.

Однако на практике можно встретить и иную форму взаимосвязи (например, рис. 3.2). Эта зависимость, экспериментально полученная при подачах в теннисе, является характерной для нелинейной формы взаимосвязи, или нелинейной зависимости.

Рисунок 3.2 – Корреляционное поле (нелинейная зависимость): по абсциссе – скорость ракетки, по ординате – скорость вылета мяча

Таким образом, визуальный анализ корреляционного поля позволяет выявить форму статистической зависимости – линейную или нелинейную. Иными словами, если статистическая связь между явлениями выражается уравнением прямой линии , то её называют линейной связью, если уравнением кривой (- парабола;- гипербола и т.д.), то такую связь называют нелинейной. Это имеет существенное значение для следующего шага в анализе – выбора и вычисления соответствующего коэффициента корреляции.

2.3. Оценка тесноты взаимосвязи

Для оценки тесноты линейной взаимосвязи в корреляционном анализе используется значение (абсолютная величина) специального показателя – коэффициента корреляции. Абсолютное значение (модуль числа) любого коэффициента корреляции лежит в пределах от 0 до 1. Объясняют (интерпретируют) абсолютное значение коэффициента корреляции следующим образом:

– коэффициент корреляции равен 1,00 (функциональная взаимосвязь, т.е. значению одного показателя соответствует только одно значение другого показателя);

– коэффициент корреляции равен 0,99 – 0,70 (сильная статистическая взаимосвязь);

– коэффициент корреляции равен 0,69 – 0,50 (средняя статистическая взаимосвязь);

– коэффициент корреляции равен 0,49 – 0,20 (слабая статистическая взаимосвязь);

– коэффициент корреляции равен 0,19 – 0,01 (очень слабая статистическая взаимосвязь);

– коэффициент корреляции равен 0,00 (корреляция не обнаружена).

На рисунках 3.3 и 3.4 приведены примеры двух различных зависимостей.

Рисунок 3.3 – Зависимость между становой силой и результатами в толкании ядра (n = 80). Пример очень слабой корреляционной зависимости. Коэффициент корреляции равен 0,09. По абсциссе – становая сила, по ординате – результат толкания ядра

Таким образом, значение (абсолютная величина) коэффициента корреляции, изменяясь в пределах от 0 до 1, позволяет оценивать тесноту взаимосвязи. Кроме тесноты нас будет интересовать и направленность взаимосвязи.

Рисунок 3.4 – Зависимость между результатами в толкании ядра разного веса (n = 80). Пример сильной корреляционной зависимости. Коэффициент корреляции равен 0,892. По абсциссе – результат толкания ядра 5 кг, по ординате – результат толкания ядра 3 кг

Рисунок 3.5 – Зависимость между результатами в беге на 100 м и прыжками в длину с разбега (n = 50). Пример отрицательной взаимосвязи: коэффициент корреляции равен –0,628. С уменьшением времени бега (при увеличении скорости) растут результаты в прыжках. По абсциссе – результаты в беге на 100 м, по ординате – в прыжках в длину