Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры на госник сбор и подготовка.docx
Скачиваний:
105
Добавлен:
17.03.2015
Размер:
193.88 Кб
Скачать

24.Расчетные схемы нтс с рекуперацией теплоты в газовом теплообменнике, с рекуперацией теплоты газа и жидкости

Поскольку охлаждение газа в системах НТС достигается за счет дросселирования его, то мере снижения пластового давления, кол-во получаемой энергии уменьшается, что ухудшает процесс обработки газа, а это вызывает необходимость обеспечивать промыслы установками по производству холода (холодильные установки, турбодетандеры, вихревые трубы). При обработке газа теплота расходуется на конденсацию и охлаждение воды и тяж. у/в-ов. Для расчета установок системы, из которого определяется потребное кол-во теплоты при заданной температуре сепарации или находится температура сепарации по заданной холодопроизводительности.

Рассмотрим эту задачу на примере различных технологических схем:

1) Технологическая схема с рекуперацией теплоты в газовом т/о. Для технологической схемы с рекуперацией теплоты в т/о (рис. 2) уравнение теплового баланса имеет вид:

dQх=dQв+dQв+dQк+dQк+dQп+dQнг

dQНГ – потери тепла от недорекуперации газа в т/о;

dQнг=Qгdt=Qг(t1–t4)

где – средняя теплоемкость газа в интервале температурt4–t1.

t4 – температура газа при выходе из т/о.

2). Технологическая схема с рекуперацией теплоты газа и жидкости. Для данной схемы уравнение теплового баланса имеет вид:

dQх=dQв+dQк+dQнг+dQнж+dQнк

где dQНЖ – потери теплоты от недорекуперации ж-сти в т/о;

dQнк – кол-во теплоты, полученное при испарении конденсата.

dQнж=Qг(W1–W2)Cрв(t1–t5)+QгqкСрк(t1–t5)

где t5 – температура ж-сти на выходе из т/о.

В промысловых условиях величины  и Ср переменные, которые зависят от давления и температуры, и состава газа. При расчете теплового баланса установки, приведенной на рис. 3 необходимо учитывать теплоту испарения конденсата при рекуперации теплоты конденсата в теплообменнике Т-2.

Для сравнивания расмотренных технологических схем приведены результаты расчетов необходимого изменения давления для получения температуры сепарации –10оС. расчеты выполнены на 1 м3 газа из которого конденсируется 100 г у/в-го конденсата при начальной температуре 40оС и tп=5оС.

Расчеты показывают, что для уменьшения потребного кол-ва теплоты наиболее рационально рекуперировать как теплоту газа, так и теплоту жидкости. В этом случае, чтобы получить температуру –10 0С в НТС-ре изменение давления на штуцере должно быть 7,1 Мпа. Рис. 1. Р=23,4 МПа.

25.Технологические схемы промысловой обработки г методом нтс

Принцип-я технол-я схема НТС приведена на рис.1. Она предназначена для промысловой обработки Г на ГКМ, расположенных в любой климат-й зоне, с содержанием у/в к-та в продукции скв-н до 100 см33. Сырой Г из скв-ны, под действием Руст, поступает на групповую установку, где после предварит-го дросселирования направляется в сеп-р I-й ступени 3. Кол-во скв-н, подключенных к этому сеп-ру, зависит от пропускной способности последнего. В сеп-ре 3 происходит отделение от Г ж-ти, выделившейся по пути его движения от забоя скв-ны. Затем Г направляется в т/о 5, где охлаждается Г-м, поступающим в межтрубное пространство из НТС-ра 7. Из т/о-ка Г поступает через штуцер в НТС-р 7, в котором он сеп-ся от ж-ти, выделившейся за счет понижения t-ры в т/о-ке и дросселе или эжекторе. Осушенный Г из сеп-ра 7 поступает в т/о-к 5 и охлаждает продукцию скв-ны, и затем направляется через замерное устройство во внутрипромысловый газосборный коллектор. Ж-ть, нестабильн. у/в к-т, водный раствор ингибитора г/о, выделившиеся в сеп-ре I-й ступени 3, поступают в к-тосборник 4 и далее непрерывным потоком направляются в разделительную емкость 10, где происходит отделение у/в к-та и водного раствора ингибитора г/о. Из разделит. емкости 10 у/в к-т под своим давлением, через т/о-к 9 подается в поток Г перед низко-температурным сеп-ром, а водный раствор ингибитора г/о направляется в емкость 11 для  Р, и через фильтр 12, для очистки от мех. примесей, в регенерационную установку 13. При образовании гидратов в шлейфах регенерированный ингибитор из установки 13 с помощью насоса 19 подается в шлейфы для предотвращения г/о в них. Поток нестабильного у/в к-та и водного раствора ингибитора г/о из НТС-ра 7 направляются в разделительную емкость 15 через межтрубное пространство т/о 9, где охлаждает нестаб-й к-т, поступающий из разделительной емкости 10. Из разделительной емкости 15 раствор ингибитора г/о, через фильтр поступает на установку регенерации 14, где регенерируется и насосом 19 подается в Г-й поток перед т/о-м 5. У/в к-т из разделит-й емкости 15 направляется через межтрубное пространство т/о-ка 18 в деэтанизатор 16. Установка деэтанизации, состаящая из тарельчатой колонны, печи и т/о-ка предназначена для промысловой подготовки к-та к транспорту. Эта установка позволяет в промысл. условиях извлечь из Г пропан-бутановые фракции. Заданная t-ра низа деэтанизатора поддерживается с помощью т/о-ка 18, в котором стабильн-й к-т, подогретый в печи 17 до t =160 оС отдает свое тепло насыщенному к-ту, поступающему из разделит. емкости 15.

Охлажденный стабильн-й к-т подается в к-топровод. По схеме предусматривается также ввод части холодного нестабильн-го к-та на верхнюю тарелку деэтанизатора. В таком случае деэтанизатор будет работать режиме аб-но-отпарной колонны. Стабилизация к-та путем ступенчатой дегазации применяется при незначит-м его содержании(< 20 см33) и небольших объемов добычи Г. Г выветривания или дегазации из разделит-й емкости 15, через эжектор или компрессор подается на вход НТС-ра. Г дегазации из разделит-й емкости 10, также подается в общий поток Г в НТС-р. На схеме показан также замерной сеп-р 1, на выкидной линии которого установлена замерная диафрагма. Сеп-р снабжен к-тосборником-разделителем 2 со счетчиками. Эти замерные устройства предназначены для периодического контроля за дебитами Г и жидкости.

3. Современные тенденции развития техники и технологии систем сбора УВ сырья на Г и ГКМ. Однако в перспективе при строительстве мощных и сверхмощных (>20 скв-н) кустов разрабатывающих один эксплуатационный объект, с целью повышения надежности и гибкости технологической схемы, целесообразно проводить конструкционную проработку двухтрубных систем сбора с 2 шлейфами от куста. Наоборот для кустов среднего размера и при наличии 2 эксплуатационных объектов иногда целесообразно рассмотреть вариант однотрубных систем сбора с применением кустовых ижектирующих устройств для выравнивания Р 2 групп скв-н.

Г-овые потоки с нескольких шлейфов могут объединяться в Г-осборный коллектор – это трубопровод =325, 426, 500 мм ведущий к УКПГ. Т. о., шлейфы – это ГПр-ы, начинающиеся от скв-н (кустов) и заканчивающиеся либо на входе УКПГ в месте регулирования Р и распределения Г, такая система назыв. гребенкой или пунктом или зданием переключающей арматуры, либо врезкой в Г-осборный коллектор. Наиболее распространены следующие системы сбора: индивидуальная, групповая, централизованная и децентрализованная (рис. 1)

Выбор той или иной системы обусловлен рядом технологических и исторических факторов.

29,30.Абсорбционная осушка природного газа.