Добавил:
Здесь собраны файлы для СФ и общие дисциплины других факультетов. Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Р1 С2.docx
Скачиваний:
3
Добавлен:
30.08.2025
Размер:
5.7 Mб
Скачать

26. Роль изменений альвеолярного, плеврального и транспульмонального давлений в осуществлении вдоха и выдоха.

Колебания давления в легких, вызывающие движение воздуха.

Альвеолярное давление — давление внутри легочных аль­веол. Во время задержки дыхания при открытых верхних дыхатель­ных путях давление во всех отделах легких равно атмосферному. Перенос О2 и СО2 между внешней средой и альвеолами легких происходит только при появлении разницы давлений между этими воздушными средами. Колебания альвеолярного или так называемого внутрилегочного давления возникают при изменении объема грудной клетки во время вдоха и выдоха.

Изменение альвеолярного давления на вдохе и выдохе вызывает движение воздуха из внешней среды в альвеолы и обратно. На вдохе возрастает объем легких. Согласно закону Бойля—Мариотта, альвеолярное давление в них уменьшается и в результате этого в легкие входит воздух из внешней среды. Напротив, на выдохе уменьшается объем легких, альвеолярное давление увеличивается, в результате чего альвеолярный воздух выходит во внешнюю среду.

Внутриплевральное давление — давление в герметично замкнутой плевральной полости между висцеральными и париеталь­ными листками плевры. В норме это давление является отрицатель­ным относительно атмосферного. Внутриплевральное давление воз­никает и поддерживается в результате взаимодействия грудной клет­ки с тканью легких за счет их эластической тяги.

При спокойном дыхании внутриплевральное давление ниже ат­мосферного в инспирацию на 6—8 см вод. ст., а в экспирацию — на 4—5 см вод. ст.

Разница между альвеолярным и внутриплевральным давлениями называется транспульмональным давлением. В области контакта легкого с диафрагмой транспульмональное давление на­зывается трансдиафрагмальным.

Величина и соотношение с внешним атмосферным давлением транспульмонального давления, в конечном счете, является основным фактором, вызывающим движение воздуха в воздухоносных путях легких.

Изменения альвеолярного давления взаимосвязаны с колебани­ями внутриплеврального давления.

Альвеолярное давление выше внутриплеврального и относитель­но барометрического давления является положительным на выдохе и отрицательным на вдохе. Внутриплевральное давление всегда ниже альвеолярного и всегда отрицательное в инспирацию. В экспирацию внутриплевральное давление отрицательное, поло­жительное или равно нулю в зависимости от форсированности выдоха.

На движение воздуха из внешней среды к альвеолам и обратно влияет градиент давления, возникающий на вдохе и выдохе между альвеолярным и атмосферным давлением

27. Эластические свойства легких и грудной клетки. Растяжимость легких. Сопротивление в дыхательной системе.

Эластические свойства легких - если изолированное легкое поместить в камеру и снизить давление в ней ниже атмосферного, то легкое расширится. Его объем можно изме­рить с помощью спирометра, что поволяет построить статическую кривую давление—объем.

В отсутствие потока кривые вдоха и выдоха различны. Это различие между кривыми характеризует способность всех эластических структур легче реагировать на уменьшение, чем на увеличе­ние объема.

Эластические свойства грудной клетки - Упругостью обладают не только легкие, но и грудная стенка. При оста­точном объеме легких эластическая отдача грудной стенки направлена на­ружу. По мере того как объем грудной полости увеличивается, отдача стенки, направленная наружу, снижается и при объеме грудной полости около 60 % жизненной емкости легких падает до нуляПри дальнейшем расширении грудной клетки до уровня общей емкости легких от­дача ее стенки направляется внутрь. Нормальная растяжимость грудной стенки равна 0,2 л/см вод. ст. Легкие и грудная стенка функционально объединены посредством плевральной полости. на уровне общей емкости легких эластические отдачи легких и грудной стенки, суммируются, создавая большое давление отдачи всей дыхательной системы. На уровне остаточного объема направленная наружу эластическая отдача грудной стенки значительно превосходит отдачу легких, направлен­ную внутрь. В результате в дыхательной системе возникает суммарное давление отдачи, направленное наружу. На уровне функциональной остаточ­ной емкости (РКС) эластическая тяга легких, направленная внутрь, урав­новешена эластической тягой грудной клетки, направленной наружу. Таким образом, при РК.С дыхательная система находится в равновесии. Статическая растяжимость всей дыхательной системы в норме составляет 0,1 л/см вод.ст.

Растяжимость легких - Отношение между давлением и изменением объема легких может быть выражено как Р = Е-дУ, где Р — растягивающее давление, Е — эластичность, ДУ — изменение объема легких. Эластичность — мера упругости легочной ткани. Величина, обратная эластичности (С$1а1 = 1/Е), называется статической растяжимостью. Таким образом, растяжимость — это изменение объема на единицу давления. У взрослых она равна 0,2 л/см вод. ст. Легкое более растяжимо при низких и средних объемах. Статическая растяжимость зависит от размеров легких. Легкое крупных размеров подвержено большим изменениям своего объема на единицу изменения давления, чем маленькое легкое.

Сопротивление в дыхательной системе - Продвижение воздуха через дыхательные пути встречает сопротивление сил трения о стенки бронхов, величина которого зависит от характера по­тока воздуха. В воздухоносных путях встречаются 3 режима потока: ламинарный, турбулентный и переходный. Наиболее характерным видом потока в условиях дихотомического разветвления трахеобронхиального дерева является переходный, тогда как ламинарный наблюдается лишь в мелких воздухоносных путях. Сопротивление воздухоносных путей можно рассчитать, разделив раз­ность давлений в ротовой полости и альвеолах на объемную скорость воз­душного потока. Сопротивление воздухоносных путей распределяется неравномерно У взрослого человека при дыхании через рот на глотку и гортань приходится около 25 % общего сопротивления; на долю внутригрудных крупных воздухоносных путей (трахея, долевые и сегмен­тарные бронхи) — около 65 % общего сопротивления, остальные 15 % —на долю воздухоносных путей с диаметром менее 2 мм. Мелкие воздухоносные пути вносят незначительный вклад в общее сопротивление, так как их общая площадь поперечного сечения велика и, следовательно, сопротивление мало.На сопротивление воздухоносных путей существенно влияет изменение объема легких. Бронхи растягиваются окружающей их легочной тканью; их просвет при этом увеличивается, а сопротивление снижается. Аэроди­намическое сопротивление зависит также от тонуса гладких мышц брон­хов и физических свойств воздуха (плотность, вязкость). Нормальное сопротивление воздухоносных путей у взрослых на уровне функциональной остаточной емкости (РК.С) равно примерно 15 см вод. ст./л/с.