Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
linal1.doc
Скачиваний:
37
Добавлен:
16.03.2015
Размер:
2.85 Mб
Скачать

Определение смешанного произведения векторов. Теоремы, выясняющие геометрический смысл смешанного произведения.

Пусть ,,- какие либо три вектора; - смешанное произведение векторов ,,. Следующая теорема позволяет выяснить геометрический смысл смешанного произведения.

Теорема1: Пусть ,, - три некомпланарных вектора. Отложим их от одной точки О. И построим на этих векторах параллелепипед. объему построенного параллелепипеда с + или – в зависимости от того какой является тройка векторов: правой(+) или левой(-).

Отложим от точки О . , где S – площадь параллелограмма. , где h – высота параллелепипеда, ,, - правая тройка значит +, левая значит - . (ч.т.д.)

Теорема 2: Для того чтобы три вектора ,,были компланарны( линейно зависимы) необходимо и достаточно чтобы (1)

Доказательство: Пусть ,,–компланарны, Если бы эти векторы были не компланарны, тогда на этих векторах можно построить параллелипипед. Объём которого равен V=а,b*c0- а это противоречит (1). Получили противоречие  ,,–компланарны.(ч.т.д.)

Из теорем 1 и 2 следует что т.к. модули и левой и правой частей равны объему одного и того же параллелепипеда и тройки , векторов имеют одинаковую ориентацию. Поэтому в дальнейшем смешанное произведение будем обозначать просто . Смешанное произведение меняет знак при перестановке двух сомножителей нечетное число раз, т.к. каждая перестановка двух сомножителей меняет ориентацию тройки векторов.

29---------------------------------------------------------------------------

Выражение смешанного произведения трёх векторов через координаты перемножаемых векторовому в дальнейшем смешанное произведение будем обозначать просто евой(-).

0000000000000000000000000000000000000000000000000000

Теорема 3: Смешанное произведение векторов выражается через их координаты , , в произвольном базисе следующей формулой:

Доказательство:

(ч.т.д.)

Если базис правый ортонормированный то и тогда

Необходимое и достаточное условие компланарности (линейной зависимости) трех векторов можно теперь записать в координатном виде

Двойное векторное произведение векторов. Определение и формула для вычисления( без доказательства).

Двойным векторным произведением называется произведение .

Можно доказать что для любых трех векторов ,,

30---------------------------------------------------------------------------

Алгебраические линии и поверхности. Теоремы об инвариантности (неизменности) порядка.

Определение1: Алгебраической поверхностью называется множество точек, которое в какой-нибудь ДСК может быть задано уравнением вида ; - неотрицательные целые числа. Наибольшее из этих чисел называется степенью уравнения или порядком поверхности.

Определение2: Алгебраической линией на плоскости называется множество точек которое в какой-нибудь ДСК на плоскости может быть определено уравнением ; называются степенью уравнения или порядком линии.

Теорема об инвариантности( неизменности) порядка:

1. Если поверхность в некоторой ДСК может быть задана уравнением вида (1) то и в любой другой ДСК она может быть задана уравнением того же вида имеющим ту же степень.

2. Если линия на плоскости в некоторой ДСК может быть задана уравнением вида (2) то и в любой другой ДСК она может быть задана уравнением того же вида имеющим туже степень.

Доказательство: Обе теоремы доказываются одинаково. Докажем теорему 2. С этой целью перейдем от ДСК о которой речь шла в определении к произвольной новой ДСК. Новые координаты . Чтобы получить новое уравнение линии нужно x и y подставить в (2). Ясно что при этом превратится в многочлен в степени (k+e). Степень суммы многочленов не превышает степени старшего члена( степень могла бы понизиться если бы члены с наибольшей степенью взаимно уничтожились). Таким образом мы доказали пока что алгебраическая линия в любой ДСК имеет уравнение вида (2) причем степень уравнения при переходе от одной ДСК к другой не может повыситься. Остается доказать что она не может и понизиться и должна оставаться постоянной. Предположим противное, что при переходе от одной СК к другой степень понизилась, тогда при обратном переходе она должна повыситься что невозможно.(ч.т.д.)

31---------------------------------------------------------------------------

Доказать, что в о.д.с.к. на плоскости(в пространстве) каждая прямая линия(плоскость) может быть задана линейным уравнением; обратно : каждое линейное уравнение в о.д.с.к. на плоскости(в пространстве) определяет прямую линию(плоскость).

Уравнения первой степени или линейные уравнения связывающие координаты точки в пространстве имеют вид . Аналогично на плоскости .

Теорема1: В общей ДСК в пространстве каждая плоскость может быть задана линейным уравнением (1). Обратно каждое линейное уравнение (1) в ОДСК определяет плоскость.

Теорема2: В ОДСК на плоскости каждая прямая линия может быть задана уравнением(2). Обратно каждое линейное уравнение (2) в ОДСК на плоскости определяет прямую линию.

Доказательство: Обе теоремы доказываются одинаково. Докажем теорему 1. Пусть задана некоторая плоскость. Систему координат выберем так: точка О и два базисных вектора поместим в плоскость, а вектор выполним произвольно. В такой СК наша плоскость будет иметь линейное уравнение Z=0. В силу теоремы об инвариантности наша плоскость будет иметь линейное уравнение и в любой другой ДСК.

Обратно пусть мы имеем ОДСК и линейное уравнение(1). Докажем что это линейное уравнение определяет плоскость. Перейдем к другой ДСК. Для определенности пусть С≠0. Сделаем замену переменных: . Покажем что эта система равенств определяет переход к новой системе координат( выражает связь между старыми и новыми координатами точки). .

Переход к новой СК:

Новое начало СК в старой системе . Уравнение плоскости будет иметь уравнение(т.е. уравнение (1) переходит в новой СК в уравнение) Z’=0. Значит и уравнение(1) определяет плоскость. (ч.т.д.)

Уравнение (1) и (2) называются общими уравнениями плоскости и прямой на плоскости соответственно.

32---------дописать-----------------------------------------------------

Соседние файлы в предмете Линейная алгебра