Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Алексеев информатика.doc
Скачиваний:
321
Добавлен:
15.03.2015
Размер:
17.6 Mб
Скачать

4.2.5. Устройства вывода информации

После введения пользователем исходных данных компьютер должен их обработать в соответствии с имеющейся программой и вывести полученные результаты для восприятия их оператором или для использования другими автоматическими устройствами.

Выводимая информация может отображаться на экране монитора, печататься на бумаге (с помощью принтера или плоттера), воспроизводиться в виде звуков (с помощью акустических колонок или головных телефонов), регистрироваться в виде тактильных ощущений (технология виртуальной реальности), распространяться в виде управляющих сигналов (устройства автоматики), передаваться в виде электрических сигналов по сети.

Дисплей (монитор) является наиболее популярным устройством вывода информации. Существуют монохромные (черно-белые) и цветные дисплеи. Вначале рассмотрим принцип действия черно-белых мониторов.

Основным узлом дисплея является электронно-лучевая трубка (ЭЛТ). Одна из возможных конструкций ЭЛТ показана на рисунке.

Перечислим основные детали, из которых состоит ЭЛТ: катод, анод, модулятор, горизонтальные отклоняющие пластины, вертикальные отклоняющие пластины, экран, колба.

Катод, анод и модулятор образуют электронный прожектор, который иногда называют электронной пушкой. Горизонтальные и вертикальные отклоняющие пластины образуют отклоняющую систему.

В ЭЛТ используется поток электронов, сфокусированных в узкий пучок, управляемый по интенсивности и по положению в пространстве и взаимодействующий с экраном трубки. Электронный пучок испускается электронным прожектором (точнее, катодом), а изменение положения пучка на экране производится отклоняющей системой.

Перемещение электронного луча по экрану ЭЛТ в соответствии с определенным законом называется разверткой, а рисунок, прочерченный следом пучка на экране, – растром. Развертка осуществляется подачей на отклоняющую систему ЭЛТ периодически изменяющихся напряжений. В ходе развертки электронный пучок последовательно обегает по строчкам поверхность экрана ЭЛТ.

В процессе сканирования поток электронов движется по зигзагообразной траектории от левого верхнего угла экрана к нижнему правому углу.

Экран покрыт люминофором, поэтому в местах падения электронного пучка появляется свечение, яркость которого пропорциональна интенсивности пучка. Интенсивность потока электронов изменяется в соответствии с сигналами, подаваемыми на управляющий электрод – модулятор. Именно эти сигналы формируют необходимое изображение на экране дисплея.

С помощью отклоняющей системы модулированный пучок электронов развертывается в растр, высвечивая на экране строку за строкой, воспроизводя таким образом изображение кадр за кадром. Благодаря инерционности зрения человек видит на экране слитное, часто динамическое, изображение.

Любое изображение на экране монитора можно составить из множества дискретных точек, называемых пикселями (pixel – picture element).

Дисплей взаимодействует со своим адаптером, который может также называться видеокартой, видеоадаптером или контроллером. Дисплей и адаптер очень тесно связаны между собой и совместно определяют качество изображения – разрешение, количество воспроизводимых цветов, скорость регенерации (число кадров в единицу времени).

Разрешение зависит от размеров экрана и минимального элемента изображения (так называемого «зерна», равного для лучших мониторов 0,24 – 0,28 мм). Для 14-дюймовых мониторов разрешение обычно не более 800  600 элементарных точек (пикселей), для 15-дюймовых – 1024  768, для 21-дюймовых – 1280  1024 точек.

Способность адаптера выводить на экран монитора изображение с заданным разрешением и глубиной цвета (т. е. числом цветовых оттенков) определяется объемом установленной оперативной памяти на плате адаптера. Для отображения 16,7 миллиона оттенков цветов (24 бита на пиксель) нужно установить в адаптер не менее 1,37 Мбайта памяти при разрешении 800  600 элементарных точек, 3,75 Мбайта при разрешении 1280  1024 и 5,49 Мбайта при разрешении 1600  1200.

Для комфортного восприятия изображения, без утомляющего зрения мерцания, нужны достаточно высокие частоты кадровой развертки (рекомендуется не менее 75 Гц).

Принцип работы цветного монитора сходен с принципом действия монохромного монитора, однако конструкция цветного монитора существенно сложнее.

Цветной дисплей содержит три электронные пушки с отдельными схемами управления. Экран выполняется в виде мозаичной структуры, состоящей из зерен люминофора трех цветов свечения: красного (Red), зеленого (Green) и синего (Blue). Зерна расположены тройками (триадами) так, чтобы электроны каждой из трех пушек попадали только на зерна «своего» цвета. Для обеспечения этого на пути движения электронов устанавливают маски.

Принцип действия цветного дисплея базируется на физиологической особенности зрения человека. Так, при одинаковой интенсивности свечения трех разноцветных маленьких соседних зерен этот участок экрана воспринимается как белая точка. Свечение соседних красного и зеленого зерен воспринимается как желтая точка, а свечение синего и зеленого зерен дает голубую точку и т. д.

Изменяя интенсивность свечения трех основных цветов (RGB), можно получить любой цвет или оттенок. Такой способ получения любых цветов является одной из систем цветопередачи и назван RGB-системой (по первым буквам соответствующих английских слов).

Существуют мониторы, основанные на других физических принципах: жидкокристаллические, плазменные и люминесцентные. К сожалению, качество изображения этих мониторов пока во многом уступает качеству, получаемому с помощью ЭЛТ.

Принтеры в зависимости от порядка формирования изображения подразделяются на последовательные, строчные и страничные. Принадлежность принтера к той или иной группе зависит от того, формирует ли он на бумаге символ за символом или сразу всю строку, а то и целую страницу.

По физическому принципу действия принтеры делятся на следующие типы: термографические, лепестковые (ромашковые), матричные, струйные и лазерные.

Конструкция первых двух типов принтеров морально устарела, и они практически уже не используются.

В матричных принтерах изображение формируется из точек ударами иголок по красящей ленте. Под действием управляющих сигналов, поступающих на электромагниты, иголки «выколачивают» краску из ленты, оставляя следы на бумаге. В зависимости от конструкции печатающая головка матричного принтера может иметь 9, 18 или 24 иголки. Все символы формируются из отдельных точек.

Печатающие головки струйных принтеров вместо иголок содержат тонкие трубочки – сопла, через которые на бумагу выбрасываются капельки чернил. Печатающая головка струйного принтера содержит от 12 до 64 сопел, диаметры которых тоньше человеческого волоса.

Известно несколько принципов действия струйных печатающих головок.

В одной из конструкций на входном конце каждого сопла расположен маленький резервуар с чернилами. Позади резервуара располагается нагреватель (тонкопленочный резистор). Когда резистор нагревается проходящим по нему током до температуры 500°С, окружающие его чернила вскипают, образуя пузырек пара. Этот расширяющийся пузырек выталкивает из сопла капли чернил диаметром 50 – 85 мкм со скоростью около 700 км/ч.

В другой конструкции печатающей головки источником давления служит мембрана, приводимая в движение пьезоэлектрическим способом.

Во всех конструкциях принтеров электромеханические устройства перемещают печатающие головки и бумагу таким образом, чтобы печать происходила в нужном месте.

В лазерных принтерах используется электрографический принцип создания изображения. Процесс печати включает в себя создание невидимого рельефа электростатического потенциала в слое полупроводника с последующей его визуализацией. Визуализация осуществляется с помощью частиц сухого порошка – тонера, наносимого на бумагу. Тонер представляет собой кусочки железа, покрытые пластиком. Наиболее важными частями лазерного принтера являются полупроводниковый барабан, лазер и прецизионная оптико-механическая система, перемещающая луч.

Лазер генерирует тонкий световой луч, который, отражаясь от вращающегося зеркала, формирует электронное изображение на светочувствительном полупроводниковом барабане.

Поверхности барабана предварительно сообщается некоторый статический заряд. Для получения изображения на барабане лазер должен включаться и выключаться, что обеспечивается схемой управления. Вращающееся зеркало служит для разворота луча лазера в строку, формируемую на поверхности барабана. Поворот барабана на новую строку осуществляет прецизионный шаговый двигатель. Это смещение определяет разрешающую способность принтера и может составлять, например, 1/300, 1/600 или 1/1200 дюйма. Процесс развертки изображения на барабане во многом напоминает построение изображения на экране монитора (создание растра).

Когда луч лазера попадает на предварительно заряженный барабан, заряд «стекает» с освещенной поверхности. Таким образом, освещаемые и неосвещаемые лазером участки барабана имеют разный заряд. В результате сканирования всей поверхности полупроводникового барабана на нем создается скрытое (электронное, не видимое для человека) изображение.

На следующем этапе работы принтера происходит проявление изображения, т. е. превращение скрытого электронного изображения в видимое изображение. При проявлении изображения используется следующее физическое явление. Заряженные частицы тонера притягиваются только к тем местам барабана, которые имеют противоположный заряд по отношению к заряду тонера.

Когда видимое изображение на барабане построено и он покрыт тонером в соответствии с оригиналом, подаваемый лист бумаги заряжается таким образом, что тонер с барабана притягивается к бумаге. Прилипший порошок закрепляется на бумаге за счет нагрева частиц тонера до температуры плавления. В результате этих операций формируется водоупорный отпечаток.

Цветные лазерные принтеры формируют изображение, последовательно накладывая голубой, пурпурный, желтый и черный тонеры на фоточувствительный барабан. Принтер работает в четырехпроходном режиме, поэтому скорость печати цветного принтера существенно меньше, чем у черно-белого принтера.

Кроме лазерных принтеров, существуют так называемые LED-принтеры (Light Emitting Diode), которые получили свое название из-за того, что полупроводниковый лазер в них заменен «гребенкой» (линейкой) свето-диодов. В этом случае не требуется сложная механическая система вращения зеркала. Изображение одной строки на полупроводниковом барабане формируется одновременно.

В табл. 1 приведены характеристики принтеров различной конструкции.

Таблица 1

Плоттеры (или графопостроители) – устройства вывода графической информации. Плоттеры используют для оформления больших плакатов, чертежей, карт, эскизов печатных плат, диаграмм, гистограмм.

Работа плоттера основана на механических и немеханических способах вывода графической информации. При механическом способе применяются карандаши, перья с чернилами. Аналогично принтерам в немеханических графопостроителях применяются термический, матричный, струйный и лазерный способы печати.

В качестве устройств, способных выполнять функции ввода и вывода информации, могут использоваться коммуникационные адаптеры. С их помощью осуществляют связь между ЭВМ по телефонной линии. Поскольку пока еще телефонные сети работают не с цифровыми, а с аналоговыми электрическими сигналами звукового диапазона, необходимо преобразовать цифровые сигналы, поступающие от ЭВМ, в аналоговые сигналы и передать их в телефонную сеть. На другом конце телефонной линии необходимо осуществить обратное преобразование. Эти преобразования выполняются специальным устройством – модемом (от слов МОдулятор – ДЕМодулятор).

Модем выполняется либо в виде внешнего устройства, которое одним выходом подсоединяется к телефонной линии, а другим – к стандартному порту компьютера, либо в виде обыкновенной платы (карты), которая устанавливается на системную шину компьютера (так называемый внутренний модем).

Вывод звуковой информации осуществляется с помощью акустических колонок и головных телефонов, которые подключаются через специальный адаптер (контроллер, звуковую плату).

Существует несколько способов воспроизведения звуков (в частности музыкальных произведений).

Частотный способ (FM-синтез) воспроизведения звука основан на имитации звука реальных

инструментов, а табличный способ (wave-table-синтез) оперирует записанными в памяти звуками реальных инструментов.

Частотный синтез основывается на том, что для получения какого-либо звука используются математические формулы (модели), которые описывают спектр частот конкретного музыкального инструмента. Звуки, получаемые по этой технологии, характеризуются металлическим оттенком.

Волновой синтез основан на использовании цифровой записи реальных инструментов, так называемых семплов (samples). Семплы – это образцы звучания различных реальных инструментов, хранящиеся в памяти звуковой карты.

При воспроизведении звуков по технологии волнового синтеза пользователь слышит звуки реальных инструментов, поэтому создаваемая звуковая картина ближе к естественному звучанию инструментов.

Семплы могут храниться двумя способами: либо постоянно в ПЗУ, либо загружаться в оперативную память звуковой карты перед их использованием. Существует большой набор разнообразных семплов, что позволяет формировать практически бесконечное разнообразие звуков.