
- •Тема 1. Понятие информации, общая характеристика процессов сбора, передачи, обработки и накопления информации Лекция 1. Понятие данные и информация
- •Свойства информации
- •Качества информации
- •Лекция 2. Представление информации в компьютере.
- •Кодирование графических данных
- •Кодирование звуковых данных
- •Формула Шеннона
- •Лекция 3. Информационно-логические основы построения пк
- •Законы логических операций
- •Логические элементы эвм
- •Cумматор (p0 – перенос разряда из предыдущей операции суммирования)
- •Тема 3. Технические средства реализации информационных процессов Лекция 4. Классификация эвм. Тенденции развития вычислительной техники. Архитектура эвм.
- •Типы компьютеров:
- •Типы компьютерных систем
- •Многопроцессорные системы
- •Архитектура пк
- •Лекция 5. Состав и назначение основных узлов персонального компьютера. Их характеристики
- •Микропроцессор
- •Лекция 6. Устройства передачи данных в пк. Виды памяти пк. Устройства ввода/вывода информации в пк
- •Виды памяти пк. Назначение и основные характеристики
- •Внутренняя память пк
- •Внешняя память пк
- •Устройства ввода информации в компьютер
- •Устройства вывода информации из компьютера
- •Файловые системы
- •Лекция 8. Текстовые редакторы и процессоры, интерфейс, типовые операции. Графические редакторы и демонстрационные программы
- •Лекция 9. Электронные таблицы. Специализированные программные средства и системы программирования.
- •Тема 4. Основы защиты информации и сведений, методы защиты информации Лекция 10. Защита информации. Компьютерные вирусы. Антивирусные программы. Архивация, методы сжатия. Методы шифрования.
- •Основные источники вирусов:
- •Основные ранние признаки заражения компьютера вирусом:
- •Антивирусные программы
- •Различают типы антивирусных программ:
- •Алгоритмы сжатия информации без потерь (обратимые методы)
- •Алгоритмы сжатия информации с потерями (необратимые методы)
- •Тема 5. Базы данных Лекция 11. Методы шифрования базы данных и субд. Реляционные базы данных.
- •Тема 6. Алгоритмизация и программирование Лекция 12. Алгоритмы. Свойства алгоритмов. Языки программирования.
- •Лекция 13. Объектно-ориентированный подход к программированию.
- •Тема 7. Программное обеспечение и технологии программирования Лекция 14. Технологии программирования и принципы разработки программного приложения
- •Тема 8. Языки программирования высокого уровня Лекция 15. Эволюция и классификация языков программирования
- •Языки программирования низкого уровня
- •Машинный язык
- •Assembler (Ассемблер)
- •Языки программирования высокого уровня
- •Basic (Бейсик)
- •Fortran (Фортран)
- •Cobol (Кобол)
- •Pascal (Паскаль)
- •Объектно-ориентированное и визуальное программирование
- •Лекция 16. Программирование на языке visual basic
- •Операции Visual Basic
- •Вызов функций и процедур
- •Область видимости переменной
- •Время жизни переменной
- •Лекция 17. Среда разработки приложений visual basic.
- •Интегрированная среда разработки приложений Visual Basic
- •Компоненты рабочей среды
- •Панель элементов управления
- •Лекция 18. Разработка программного приложения.
- •Лекция 19. Компиляция и выполнение проекта План лекции:
- •Тема 9. Модели решения функциональных и вычислительных задач Лекция 20. Моделирование объектов и систем
- •Тема 10. Локальные и глобальные сети эвм Лекция 21. Локальные сети эвм
- •Типы локальных сетей
- •Архитектура (Топология) лвс
- •Сетевой кабель
- •Сравнение кабелей
- •Назначение платы сетевого адаптера
- •Администрирование сети
- •Лекция 22. Глобальные сети эвм
- •Расширение локальных сетей
- •Передача данных по сети
- •Беспроводные сети
- •Семейство протоколов tcp/ip
Архитектура (Топология) лвс
Различают три наиболее распространенные сетевые архитектуры, которые используют и для одноранговых сетей, и для сетей с выделенным файл-сервером. Это так называемые шинная, кольцевая и звездообразная структуры.
В случае реализации шинной структуры все компьютеры связываются в цепочку. Причем на ее концах надо разместить так называемые терминаторы, служащие для гашения сигнала.
|
|
|
шинная |
Кольцевая |
звездообразная |
Кольцевая структура используется в основном в сетях Token Ring и мало чем отличается от шинной.
Для построения сети с звездообразной архитектурой в центре сети необходимо разместить концентратор. Сети с звездообразной топологией поддерживают технологии Fast Ethernet и Gigabit Ethernet.
Отметим, что ПК в топологии Звезда могут соединяться как по Шинной схеме, так и по схеме Кольцо.
Топология (архитектура) сети |
Технология (способ) передачи информации |
Шина, Звезда |
Ethernet (10 Mбит/c), Fast Ethernet (100 Mбит/c), Gigabit Ethernet (1000 Mбит/c) |
Звезда, Кольцо |
Token Ring (4 Mбит/c), (16 Mбит/c), High-Speed Token Ring (100, 155 Мбит/с), FDDI (100 Mбит/c) |
Подключение сетевых компонентов
Сетевой кабель
Кабель выступает в качестве среды передачи сигналов между компьютерами. Существует большое разнообразие кабелей для ЛВС.
коаксиальный кабель
витая пара (неэкранированная, экранированная)
оптоволоконный кабель
Коаксиальный кабель состоит из медной жилы, изоляции, ее окружающей, экрана в виде металлической оплетки и внешней оболочки. Экран защищает передаваемые по кабелю данные, поглощая внешние электромагнитные сигналы, называемые шумом. |
|
Для подключения коаксиального кабеля к компьютерам используются BNC-коннекторы. |
|
Витой парой называется кабель, в котором изолированная пара проводников скручена с небольшим числом витков на единицу длины.
Существует два типа кабеля: неэкранированная витая пара (UTP) и экранированная витая пара STP). Для подключения витой пары к компьютеру используются коннекторы RJ-45. |
|
В оптоволоконном кабеле, для передачи сигналов используется свет, а не электричество. Оптоволоконные линии предназначены для перемещения больших объемов данных на очень высоких скоростях, так как сигнал в них практически не затухает и не искажается.
Оптическое волокно - чрезвычайно тонкий стеклянный цилиндр, называемый жилой, покрытый слоем стекла, называемого оболочкой, с иным, чем у жилы, коэффициентом преломления. Каждое стеклянное оптоволокно передает сигналы только в одном направлении, поэтому кабель состоит из двух волокон с отдельными коннекторами. |
|
В качестве источников света применяются светодиоды, а информация кодируется путем изменения интенсивности света. На приемном конце кабеля детектор преобразует световые импульсы в электрические сигналы.
Сравнение кабелей
Характеристики |
Коаксиальный кабель |
Витая пара |
Оптоволоконный кабель |
Эффективная длина кабеля |
185 м-тонкий 500 м - толстый |
100 м - не экраниров |
2 км |
Скорость передачи |
10 Мбит/с |
4-100 Мбит/с |
100-1000Мбит/с |