Скачиваний:
312
Добавлен:
12.03.2015
Размер:
858.62 Кб
Скачать

1. Молекулярно-кинетическая теория идеальных газов

1.1. Термодинамические параметры. @

Мысленно выделенная макроскопическая система, рассматриваемая методами термодинамики, называется термодинамической системой. Все тела, не включенные в состав исследуемой системы, называются внешней средой. Состояние системы задается термодинамическими параметрами (или, по-другому, параметрами состояния) – совокупностью физических величин, характеризующих свойства системы.Обычно в качестве основных параметров выбирают давлениер, температуру Т и удельный объемv. Различают два типа термодинамических параметров: экстенсивные и интенсивные. Экстенсивные параметры пропорциональны количеству вещества в системе, а интенсивные не зависят от количества вещества и массы системы. Интенсивными параметрами являются давление, температура, удельный объем и др., а экстенсивными – объем, энергия, энтропия.

Объем пропорционален количеству вещества в системе. При расчетах удобнее оперировать с удельным объемом v – это величина, равная отношению объема к массе системы, то есть объем единицы массы v = V/m = 1/ρ, где ρ – плотность вещества.

Давлением называется физическая величина гдеdFn- проекция силы на нормаль к поверхности площадью dS.

Температура – это физическая величина, характеризующая энергию макроскопической системы, находящейся в состоянии термодинамического равновесия. Температура системы является мерой интенсивности теплового движения и взаимодействия частиц, образующих систему. В этом состоит молекулярно-кинетический смысл температуры.В настоящее время существует две температурных шкалы – термодинамическая (градуированная в Кельвинах (К)) и Международная практическая (градуированная в градусах Цельсия (˚С)). 1˚С = 1К. Связь между термодинамической температурой Т и температурой по Международной практической шкале имеет вид: Т =t+ 273,15˚С.

Всякое изменение состояния термодинамической системы, характеризующееся изменением ее параметров, называется термодинамическим процессом. Термодинамический процесс называется равновесным, если при этом система проходит ряд бесконечно близких равновесных состояний. Равновесное состояние – это такое состояние, в которое система приходит в конце концов при неизменных внешних условиях и дальше остается в этом состоянии сколь угодно долго.Реальный процесс изменения состояния системы будет тем ближе к равновесному, чем медленнее он совершается.

1. 2. Уравнение состояния идеального газа. @

В молекулярно-кинетической теории широко используется физическая модель идеального газа. Это вещество, находящееся в газообразном состоянии, для которого выполняются следующие условия:

  1. Собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда.

  2. Между молекулами газа отсутствуют взаимодействия, кроме случайных столкновений.

  3. Столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

Модель идеального газа можно использовать при изучении реальных газов, т.к. они при условиях, близких к нормальным (давление р0= 1,013∙105Па, температура Т0=273,15К) ведут себя аналогично идеальному газу. Например, воздух при Т=230К и р= р0/50 по всем трем критериям подобен модели идеального газа.

Поведение идеальных газов описывается рядом законов.

Закон Авогадро: моли любых газов при одинаковых температуре и давлении занимают одинаковые объемы. При нормальных условиях этот объем равен VM=22,4∙10-3м3/моль.В одном моле различных веществ содержится одно и то же число молекул, называемое числом Авогадро NA= 6,022∙1023моль-1 .

Закон Бойля – Мариотта: для данной массы газа при постоянной температуре произведение давления газа на его объем есть величина постоянная pV=constпри Т =constиm=const.

Закон Шарля: давление данной массы газа при постоянном объеме изменяется линейно с температурой р=р0(1+αt) приV=constиm=const.

Закон Гей-Люссака: объем данной массы газа при постоянном давлении изменяется линейно с температурой V = V0(1+αt) при р = const и m = const. В этих уравнениях t – температура по шкале Цельсия, р0 и V0 -давление и объем при 0°С, коэффициент α =1/273,15 К-1.

Французский физик и инженер Б.Клапейрон и русский ученый Д.И.Менделеев, объединив закон Авогадро и законы идеальных газов Бойля – Мариотта, Шарля и Гей – Люссака, вывели уравнение состояния идеального газа – уравнение, связывающее вместе все три термодинамических параметра системы: для одного моля газа рVМ= RT и для произвольной массы газа

гдеVМ –молярный объем, т.е. объем одного моля газа,R– молярная газовая постоянная, равная 8,31Дж/(моль·К), М – молярная масса,V=VМ·m/M– объем всей массы газа,=m/M– количество вещества в молях. Это уравнение называется уравнением Менделеева– Клапейрона.

Существует еще одна форма записи данного уравнения:

Ее можно получить, если учесть, чтоk=R/NA = 1,38∙10-23Дж/К – это постоянная Больцмана, аn=NA/VМ – это концентрация молекул газа.

Для расчета давления в смеси разных газов применяется закон Дальтона: давление смеси идеальных газов равно сумме парциальных давлений входящих в нее газов: р =р1 + р+ … + pn .Парциальное давление – это такое давление, которое производил бы газ, входящий в состав газовой смеси, если бы он один занимал объем, равный объему смеси при той же температуре. Для расчета парциального давления идеального газа используют уравнение Менделеева– Клапейрона.

Соседние файлы в папке МОЛ-ТЕРМ