
- •Оглавление
- •Раздел I. Общие сведения о высокомолекулярных соединениях
- •1.1. Особенности полимерного состояния вещества Введение
- •1.1.1. Полимеры, общие определения
- •1.1.2. Различия в свойствах высоко- и низкомолекулярных соединений
- •1.2. Образование, получение и распространение полимеров
- •Содержание различных веществ в теле человека
- •Некоторые аминокислоты, входящие в состав белков
- •Содержание различных оксидов в базальтовых породах, мас. %
- •1.3. Классификация полимеров
- •1.3.1. Принципы классификации полимеров
- •Типичные конденсационные полимеры
- •Типичные полимеризационные полимеры
- •Классификация, молекулярно-массовые характеристики и стереохимия полимеров
- •1.3.2. Тривиальная, рациональная и систематическая номенклатура полимеров
- •Названия некоторых линейных полимеров
- •1.3.3. Классификация и номенклатура сополимеров
- •Названия некоторых элементорганических и неорганических полимеров
- •Название основных типов сополимеров
- •1.4. Молекулярно-массовые характеристики полимеров
- •1.4.1. Распределение макромолекул по молекулярным массам
- •1.4.2. Моменты распределения и средние молекулярные массы
- •1.4.3. Параметр полидисперсности
- •1.4.4. Методы определения молекулярной массы полимеров
- •1.5. Стереохимия полимеров
- •1.5.1. Химическая изомерия звеньев
- •1.5.3. Стереоизомерия
- •Температуры кристаллизации и плавления полидиенов
- •Вопросы и упражнения к лекциям 1-2
- •Раздел II. Синтез полимеров методами цепной и ступенчатой полимеризации
- •2.1. Радикальная полимеризации
- •2.1.1. Инициирование радикальной полимеризации
- •Важнейшие инициаторы радикальной полимеризации
- •2.1.2. Элементарные реакции и кинетика полимеризации
- •1. Инициирование.
- •2. Рост цепи.
- •3. Обрыв цепи.
- •Вклад диспропорционирования в реакциях обрыва (λ) для различных мономеров
- •Относительные константы передачи цепи на инициатор Син при 60ºС
- •Относительные константы передачи цепи на мономер См
- •Значения относительных констант передачи цепи Сs·104 на некоторые соединения при 60-70ºС
- •Значения относительных констант передачи цепи на полимер Ср
- •Ингибиторы радикальной полимеризации.
- •Константы ингибирования Сz, 50-60ºС
- •Константы скоростей элементарных реакций роста и обрыва при радикальной полимеризации некоторых мономеров, 20-25ºС
- •2.1.3. Молекулярно-массовое распределение при радикальной полимеризации
- •2.1.4. Влияние температуры и давления на радикальную полимеризацию
- •2.1.5. Диффузионная модель обрыва цепи. Гель-эффект
- •Влияние степени превращения мономера q на полимеризацию метилметакрилата, 22,5ºС
- •2.1.6. Каталитическая передача цепи
- •2.1.7. Псевдоживая радикальная полимеризация
- •Константы обратимого ингибирования псевдоживой полимеризации стирола в присутствии темпо
- •2.1.8. Эмульсионная полимеризация
- •Эмульсионная полимеризация смеси стирола и бутадиена
- •Вопросы и упражнения к лекциям 3-5
- •2.2. Катионная полимеризация
- •2.2.1. Элементарные реакции. Кинетика
- •Константы скорости роста в катионной полимеризации
- •Константы передачи цепи на мономер при катионной полимеризации стирола
- •Константы передачи цепи на мономер при катионной полимеризации изобутилена в различных растворителях
- •Контсанты передачи цепи при катионной полимеризации стирола
- •2.2.2. Псевдокатионная и псевдоживая катионная полимеризация
- •2.2.3. Влияние реакционной среды
- •Влияние растворителя на катионную полимеризацию стирола, инициированную hClO4
- •2.3. Анионная полимеризация
- •2.3.1. Основные реакции инициирования
- •2.3.2. Кинетика анионной полимеризации с обрывом цепи
- •2.3.3. Живая полимеризация. Блок-сополимеры
- •2.3.4. Полимеризация с переносом группы
- •2.3.5. Влияние температуры, растворителя и противоиона
- •Влияние растворителя на анионную «живую» полимеризацию стирола, 25ºС, натрий-нафталиновый комплекс 3·10-3 моль/л
- •Кинетические и термодинамические характеристики реакции роста цепи при живой полимеризации стирола, инициируемой натрий-нафталином, 20ºС, тетрагидрофуран
- •2.3.6. Ассоциация
- •2.4. Ионно-координационная полимеризация
- •Примеры стереоспецифической полимеризации
- •2.4.1. Катализаторы Циглера-Натта. Исторический аспект
- •Компоненты катализаторов Циглера-Натта
- •2.4.2. Полимеризация на гетерогенных катализаторах Циглера-Натта
- •Влияние растворителя на анионную полимеризацию 1,3-диенов, инициируемую н-бутиллитием
- •2.5. Синтез гетероцепных полимеров ионной полимеризацией
- •2.5.1. Карбонилсодержащие соединения
- •Предельные температуры и концентрации мономеров при полимеризации альдегидов
- •2.5.2. Полимеризация эфиров и эпоксидов с раскрытием цикла
- •2.5.3. Полимеризация лактамов и лактонов
- •2.5.4. Другие гетероциклы
- •2.6. Общие вопросы синтеза полимеров
- •2.6.1. Термодинамика синтеза
- •Энтальпии и энтропии полимеризации некоторых мономеров, 25ºС
- •Энтальпии δн0, энтропии δs0, функции Гиббса δg0 и предельные температуры полимеризации Тп альдегидов, 25ºС
- •Энтальпии δн0, энтропии δs0, функции Гиббса δg0 полимеризации циклоалканов при 25ºС
- •2.6.2. Сопоставление ионной и радикальной полимеризации
- •2.6.3. Об общности процессов псевдоживой полимеризации
- •2.7. Ступенчатая полимеризация
- •2.7.1. Равновесная и неравновесная поликонденсация
- •Влияние константы равновесия к на степень завершенности реакции поликонденсации х и среднечисловую степень полимеризации
- •Влияние воды на степень полимеризации при поликонденсации
- •2.7.2. Кинетика поликонденсации
- •Константы скорости реакции этерификации в гомолитических рядах одно- и двухосновных кислот, 25ºС
- •2.7.3. Молекулярно-массовое распределение полимера при поликонденсации
- •2.7.4. Разветвленные и сшитые полимеры
- •2.7.5. Фенопласты, аминопласты
- •2.7.6. Полиамиды, полиэфиры, поликарбонаты
- •2.7.7. Полиуретаны. Полисилоксаны
- •2.7.8. Жесткоцепные ароматические полимеры
- •Свойства полиариленэфирсульфонов
- •2.7.9. Сверхразветвленные полимеры
- •Очистка — б — очистка — а — очистка и т. Д.
- •Вопросы и упражнения к лекциям 9-10
- •Раздел 3. Цепная сополимеризация
- •3.1. Количественная теория сополимеризации
- •3.1.1. Кривые состава сополимера и относительные активности мономеров
- •3.1.2. Состав и микроструктура сополимера. Статистический подход
- •Доля последовательностей различной длины из мономера 1 (q1n) в эквимолярных сополимерах различных типов
- •3.1.3. Многокомпонентная сополимеризация
- •Предсказанные и определенные экспериментально составы сополимеров, полученных радикальной тер- и тетраполимеризацией
- •3.1.4. Сополимеризации до глубоких конверсии
- •3.2. Радикальная сополимеризация
- •3.2.1. Скорость сополимеризации
- •Корреляция между и r1 · r2 при радикальной сополимеризации
- •3.2.2. Природа эффекта предконцевого звена
- •Относительные активности мономеров при сополимеризации стирола (1) с акрилонитрилом (2), определенные в рамках моделей концевого и предконцевого звена, 60°с
- •3.2.3. Влияние температуры и давления на радикальную сополимеризацию
- •Значения относительных активностей мономеров при разных температурах и отношения частотных факторов
- •Влияние давления на сополимеризацию некоторых мономеров
- •3.2.4. Чередующаяся сополимеризация
- •1 Бутилметакрилат - диметилбутадиен, 2 - бутилметакрилат - (с2н5)3АlСl - диме-тилбутадиен; f1 мольная доля бутилметакрилата в исходной мономерной смеси
- •3.2.5. Влияние реакционной среды
- •3.2.6. Связь строения мономера и радикала с реакционной способностью.
- •Сополимеризация винилацетата (1) с хлорзамещенными этилена (2)
- •Влияние резонансного фактора на величину константы скорости роста, 20-30°с
- •Эмпирические и расчетные квантово-химические резонансные параметры строения мономеров и радикалов
- •Значения константы скорости реакции роста и параметра е некоторых мономеров, 25-30°с
- •Значения константы скорости реакции роста и параметра е пара-замещенных стирола, 60°с
- •Значения параметров реакционной способности мономеров схемы q-e
- •Относительные активности при сополимеризации некоторых мономеров
- •3.3. Ионная сополимеризация
- •3.3.1. Катионная сополимеризация
- •Катионная сополимеризация некоторых мономеров
- •3.3.2. Анионная сополимеризация
- •Анионная сополимеризация стирола (1) с бутадиеном-1,3 (2), инициатор н-с4н9Li
- •Влияние растворителя и противоиона на состав сополимера при сополимеризации стирола с изопреном
- •3.3.3. Сополимеризация на катализаторах Циглера-Натта
- •Реакционная способность различных мономеров в сополимеризации Циглера-Натта
- •Раздел 4. Химические превращения полимеров
- •4.1. Характерные особенности макромолекул как реагентов
- •4.1.1. Влияние соседних звеньев
- •4.1.2. Макромолекулярные и надмолекулярные эффекты
- •4.1.3. Кооперативные взаимодействия7
- •4.2. Сшивание полимеров
- •4.2.1. Высыхание красок
- •4.2.2. Вулканизация каучуков
- •4.2.3. Отверждение эпоксидных смол
- •4.3. Деструкция полимеров
- •4.3.1. Термическая деструкция. Циклизация
- •Температуры начала разложения и энергии активации термического распада некоторых полимеров
- •Продукты термического распада некоторых полимеров
- •Выход мономера при термическом распаде различных полимеров
- •4.3.2. Термоокислительная деструкция. Горение
- •Ограниченный кислородный показатель для некоторых полимеров
- •4.3.3. Фотодеструкция. Фотоокисление
- •4.4 Полимераналогичные превращения
- •4.4.1. Поливиниловый спирт
- •4.4.2. Химические превращения целлюлозы
- •4.4.3. Структурная модификация целлюлозы
- •Вопросы и упражнения к лекциям 11-15
1.2. Образование, получение и распространение полимеров
В соответствии с распространенностью в окружающем нас мире полимеры располагаются в ряд: синтетические, природные органические, природные неорганические.
Синтетические полимеры. Искусственные полимерные материалы. Человек давно использует природные полимерные материалы в своей жизни. Это кожа, меха, шерсть, шелк, хлопок и т.п., используемые для изготовления одежды, различные связующие (цемент, известь, глина), образующие при соответствующей обработке трехмерные полимерные тела, широко используемые как строительные материалы. Однако промышленное производство цепных полимеров началось в начале XX в., хотя предпосылки для этого создавались ранее.
Практически сразу же промышленное производство полимеров развивалось в двух направлениях - путем переработки природных органических полимеров в искусственные полимерные материалы и путем получения синтетических полимеров из органических низкомолекулярных соединений.
В первом случае крупнотоннажное производство базируется на целлюлозе. Первый полимерный материал из физически модифицированной целлюлозы - целлулоид - был получен еще в начале XX в. Крупномасштабное производство простых и сложных эфиров целлюлозы было организовано до и после Второй мировой войны и существует до настоящего времени. На их основе производят пленки, волокна, лакокрасочные материалы и загустители. Необходимо отметить, что развитие кино- и фотографии оказалось возможным лишь благодаря появлению прозрачной пленки из нитроцеллюлозы.
Синтетические полимеры получаются путем ступенчатой или цепной полимеризации низкомолекулярных соединений - мономеров. Ступенчатая полимеризация, называемая также поликонденсацией, осуществляется путем реакции функциональных групп мономеров, соединение которых часто сопровождается отщеплением низкомолекулярного продукта, например:
В ходе ступенчатой полимеризации сначала образуются димеры, затем тримеры, тетрамеры и т.д. Эти промежуточные продукты могут быть выделены на любой стадии полимеризации.
Цепная полимеризация осуществляется путем последовательного присоединения к растущим цепям с активными центрами на конце мономеров в результате раскрытия содержащихся в них ненасыщенных связей или циклов. Характерным признаком цепной полимеризации является очень короткое время жизни (меньше секунды) растущей цепи, несущей активный центр, и невозможность выделить ее в неизменном состоянии. Активным центром в цепной полимеризации может быть радикал, катион или анион, в соответствии, с чем различают радикальную, катионную и анионную полимеризации. Ниже приведена реакция присоединения этилена к растущей цепи, несущей на конце свободный радикал:
Из схемы видно, что присоединение мономера сопровождается регенерацией активного центра на конце цепи.
Как уже отмечалось, производство синтетических полимеров началось в 1906 г., когда Л.Бакеланд запатентовал так называемую бакелитовую смолу - продукт конденсации фенола и формальдегида, превращающийся при нагревании в трехмерный полимер. В течение десятилетий она применялась для изготовления корпусов электротехнических приборов, аккумуляторов, телевизоров, розеток и т.п., а в настоящее время чаще используется как связующее и адгезив.
Благодаря усилиям Генри Форда, перед Первой мировой войной началось бурное развитие автомобильной промышленности сначала на основе натурального, затем также и синтетического каучука. Производство последнего было освоено накануне Второй мировой войны в Советском Союзе, Англии, Германии и США. В эти же годы было освоено промышленное производство полистирола и поливинилхлорида, являющихся прекрасными электроизолирующими материалами, а также полиметилметакрилата органического стекла под названием «плексиглас», без которого было бы невозможно массовое самолетостроение в годы войны.
После войны возобновилось производство полиамидного волокна и тканей (капрон, нейлон), начатое еще до войны. В течение войны все это производство было переориентировано на выпуск парашютов. В 50-х гг. XX в. было разработано полиэфирное волокно и освоено производство тканей на его основе под названием лавсан или полиэтилентерефталат. Полипропилен и нитрон - искусственная шерсть из полиакрилонитрила продолжают список синтетических волокон, которые использует современный человек для одежды и производственной деятельности. В первом случае эти волокна очень часто сочетаются с натуральными волокнами из целлюлозы или из белка (хлопок, шерсть, шелк).
Эпохальным событием в мире полимеров явилось открытие в середине 50-х годов XX столетия и быстрое промышленное освоение катализаторов Циглера-Натта, что привело к появлению полимерных материалов на основе полиолефинов и, прежде всего, полипропилена и полиэтилена низкого давления (до этого было освоено производство полиэтилена при давлении порядка 1000 атм), а также стереорегулярных полимеров, способных к кристаллизации. Затем были внедрены в массовое производство полиуретаны - наиболее распространенные герметики, адгезивы и пористые мягкие материалы (поролон), а также полисилоксаны - элементорганические полимеры, обладающие более высокими по сравнению с органическими полимерами термостойкостью и эластичностью.
Все большее распространение получают полимеры специального назначения, синтезированные в 60-70 гг. XX в. К ним относятся, например, ароматические полиамиды, полиимиды, полиэфиры, полиэфиркетоны и др.; непременным атрибутом этих полимеров является наличие у них ароматических циклов и (или) ароматических конденсированных структур. Для них характерно сочетание выдающихся значений прочности и термостойкости.
Природные органические полимеры. Природные органическое полимеры образуются в растительных и животных организмах. Важнейшими из них являются полисахариды, белки и нуклеиновые кислоты, из которых в значительной степени состоят растения и животные (табл. 1.1) и которые обеспечивают само функционирование жизни на Земле. Считается, что решающим этапом в возникновении жизни на Земле явилось образование из простых органических молекул более сложных - высокомолекулярных.
Таблица 1.1