
- •Оглавление
- •Раздел I. Общие сведения о высокомолекулярных соединениях
- •1.1. Особенности полимерного состояния вещества Введение
- •1.1.1. Полимеры, общие определения
- •1.1.2. Различия в свойствах высоко- и низкомолекулярных соединений
- •1.2. Образование, получение и распространение полимеров
- •Содержание различных веществ в теле человека
- •Некоторые аминокислоты, входящие в состав белков
- •Содержание различных оксидов в базальтовых породах, мас. %
- •1.3. Классификация полимеров
- •1.3.1. Принципы классификации полимеров
- •Типичные конденсационные полимеры
- •Типичные полимеризационные полимеры
- •Классификация, молекулярно-массовые характеристики и стереохимия полимеров
- •1.3.2. Тривиальная, рациональная и систематическая номенклатура полимеров
- •Названия некоторых линейных полимеров
- •1.3.3. Классификация и номенклатура сополимеров
- •Названия некоторых элементорганических и неорганических полимеров
- •Название основных типов сополимеров
- •1.4. Молекулярно-массовые характеристики полимеров
- •1.4.1. Распределение макромолекул по молекулярным массам
- •1.4.2. Моменты распределения и средние молекулярные массы
- •1.4.3. Параметр полидисперсности
- •1.4.4. Методы определения молекулярной массы полимеров
- •1.5. Стереохимия полимеров
- •1.5.1. Химическая изомерия звеньев
- •1.5.3. Стереоизомерия
- •Температуры кристаллизации и плавления полидиенов
- •Вопросы и упражнения к лекциям 1-2
- •Раздел II. Синтез полимеров методами цепной и ступенчатой полимеризации
- •2.1. Радикальная полимеризации
- •2.1.1. Инициирование радикальной полимеризации
- •Важнейшие инициаторы радикальной полимеризации
- •2.1.2. Элементарные реакции и кинетика полимеризации
- •1. Инициирование.
- •2. Рост цепи.
- •3. Обрыв цепи.
- •Вклад диспропорционирования в реакциях обрыва (λ) для различных мономеров
- •Относительные константы передачи цепи на инициатор Син при 60ºС
- •Относительные константы передачи цепи на мономер См
- •Значения относительных констант передачи цепи Сs·104 на некоторые соединения при 60-70ºС
- •Значения относительных констант передачи цепи на полимер Ср
- •Ингибиторы радикальной полимеризации.
- •Константы ингибирования Сz, 50-60ºС
- •Константы скоростей элементарных реакций роста и обрыва при радикальной полимеризации некоторых мономеров, 20-25ºС
- •2.1.3. Молекулярно-массовое распределение при радикальной полимеризации
- •2.1.4. Влияние температуры и давления на радикальную полимеризацию
- •2.1.5. Диффузионная модель обрыва цепи. Гель-эффект
- •Влияние степени превращения мономера q на полимеризацию метилметакрилата, 22,5ºС
- •2.1.6. Каталитическая передача цепи
- •2.1.7. Псевдоживая радикальная полимеризация
- •Константы обратимого ингибирования псевдоживой полимеризации стирола в присутствии темпо
- •2.1.8. Эмульсионная полимеризация
- •Эмульсионная полимеризация смеси стирола и бутадиена
- •Вопросы и упражнения к лекциям 3-5
- •2.2. Катионная полимеризация
- •2.2.1. Элементарные реакции. Кинетика
- •Константы скорости роста в катионной полимеризации
- •Константы передачи цепи на мономер при катионной полимеризации стирола
- •Константы передачи цепи на мономер при катионной полимеризации изобутилена в различных растворителях
- •Контсанты передачи цепи при катионной полимеризации стирола
- •2.2.2. Псевдокатионная и псевдоживая катионная полимеризация
- •2.2.3. Влияние реакционной среды
- •Влияние растворителя на катионную полимеризацию стирола, инициированную hClO4
- •2.3. Анионная полимеризация
- •2.3.1. Основные реакции инициирования
- •2.3.2. Кинетика анионной полимеризации с обрывом цепи
- •2.3.3. Живая полимеризация. Блок-сополимеры
- •2.3.4. Полимеризация с переносом группы
- •2.3.5. Влияние температуры, растворителя и противоиона
- •Влияние растворителя на анионную «живую» полимеризацию стирола, 25ºС, натрий-нафталиновый комплекс 3·10-3 моль/л
- •Кинетические и термодинамические характеристики реакции роста цепи при живой полимеризации стирола, инициируемой натрий-нафталином, 20ºС, тетрагидрофуран
- •2.3.6. Ассоциация
- •2.4. Ионно-координационная полимеризация
- •Примеры стереоспецифической полимеризации
- •2.4.1. Катализаторы Циглера-Натта. Исторический аспект
- •Компоненты катализаторов Циглера-Натта
- •2.4.2. Полимеризация на гетерогенных катализаторах Циглера-Натта
- •Влияние растворителя на анионную полимеризацию 1,3-диенов, инициируемую н-бутиллитием
- •2.5. Синтез гетероцепных полимеров ионной полимеризацией
- •2.5.1. Карбонилсодержащие соединения
- •Предельные температуры и концентрации мономеров при полимеризации альдегидов
- •2.5.2. Полимеризация эфиров и эпоксидов с раскрытием цикла
- •2.5.3. Полимеризация лактамов и лактонов
- •2.5.4. Другие гетероциклы
- •2.6. Общие вопросы синтеза полимеров
- •2.6.1. Термодинамика синтеза
- •Энтальпии и энтропии полимеризации некоторых мономеров, 25ºС
- •Энтальпии δн0, энтропии δs0, функции Гиббса δg0 и предельные температуры полимеризации Тп альдегидов, 25ºС
- •Энтальпии δн0, энтропии δs0, функции Гиббса δg0 полимеризации циклоалканов при 25ºС
- •2.6.2. Сопоставление ионной и радикальной полимеризации
- •2.6.3. Об общности процессов псевдоживой полимеризации
- •2.7. Ступенчатая полимеризация
- •2.7.1. Равновесная и неравновесная поликонденсация
- •Влияние константы равновесия к на степень завершенности реакции поликонденсации х и среднечисловую степень полимеризации
- •Влияние воды на степень полимеризации при поликонденсации
- •2.7.2. Кинетика поликонденсации
- •Константы скорости реакции этерификации в гомолитических рядах одно- и двухосновных кислот, 25ºС
- •2.7.3. Молекулярно-массовое распределение полимера при поликонденсации
- •2.7.4. Разветвленные и сшитые полимеры
- •2.7.5. Фенопласты, аминопласты
- •2.7.6. Полиамиды, полиэфиры, поликарбонаты
- •2.7.7. Полиуретаны. Полисилоксаны
- •2.7.8. Жесткоцепные ароматические полимеры
- •Свойства полиариленэфирсульфонов
- •2.7.9. Сверхразветвленные полимеры
- •Очистка — б — очистка — а — очистка и т. Д.
- •Вопросы и упражнения к лекциям 9-10
- •Раздел 3. Цепная сополимеризация
- •3.1. Количественная теория сополимеризации
- •3.1.1. Кривые состава сополимера и относительные активности мономеров
- •3.1.2. Состав и микроструктура сополимера. Статистический подход
- •Доля последовательностей различной длины из мономера 1 (q1n) в эквимолярных сополимерах различных типов
- •3.1.3. Многокомпонентная сополимеризация
- •Предсказанные и определенные экспериментально составы сополимеров, полученных радикальной тер- и тетраполимеризацией
- •3.1.4. Сополимеризации до глубоких конверсии
- •3.2. Радикальная сополимеризация
- •3.2.1. Скорость сополимеризации
- •Корреляция между и r1 · r2 при радикальной сополимеризации
- •3.2.2. Природа эффекта предконцевого звена
- •Относительные активности мономеров при сополимеризации стирола (1) с акрилонитрилом (2), определенные в рамках моделей концевого и предконцевого звена, 60°с
- •3.2.3. Влияние температуры и давления на радикальную сополимеризацию
- •Значения относительных активностей мономеров при разных температурах и отношения частотных факторов
- •Влияние давления на сополимеризацию некоторых мономеров
- •3.2.4. Чередующаяся сополимеризация
- •1 Бутилметакрилат - диметилбутадиен, 2 - бутилметакрилат - (с2н5)3АlСl - диме-тилбутадиен; f1 мольная доля бутилметакрилата в исходной мономерной смеси
- •3.2.5. Влияние реакционной среды
- •3.2.6. Связь строения мономера и радикала с реакционной способностью.
- •Сополимеризация винилацетата (1) с хлорзамещенными этилена (2)
- •Влияние резонансного фактора на величину константы скорости роста, 20-30°с
- •Эмпирические и расчетные квантово-химические резонансные параметры строения мономеров и радикалов
- •Значения константы скорости реакции роста и параметра е некоторых мономеров, 25-30°с
- •Значения константы скорости реакции роста и параметра е пара-замещенных стирола, 60°с
- •Значения параметров реакционной способности мономеров схемы q-e
- •Относительные активности при сополимеризации некоторых мономеров
- •3.3. Ионная сополимеризация
- •3.3.1. Катионная сополимеризация
- •Катионная сополимеризация некоторых мономеров
- •3.3.2. Анионная сополимеризация
- •Анионная сополимеризация стирола (1) с бутадиеном-1,3 (2), инициатор н-с4н9Li
- •Влияние растворителя и противоиона на состав сополимера при сополимеризации стирола с изопреном
- •3.3.3. Сополимеризация на катализаторах Циглера-Натта
- •Реакционная способность различных мономеров в сополимеризации Циглера-Натта
- •Раздел 4. Химические превращения полимеров
- •4.1. Характерные особенности макромолекул как реагентов
- •4.1.1. Влияние соседних звеньев
- •4.1.2. Макромолекулярные и надмолекулярные эффекты
- •4.1.3. Кооперативные взаимодействия7
- •4.2. Сшивание полимеров
- •4.2.1. Высыхание красок
- •4.2.2. Вулканизация каучуков
- •4.2.3. Отверждение эпоксидных смол
- •4.3. Деструкция полимеров
- •4.3.1. Термическая деструкция. Циклизация
- •Температуры начала разложения и энергии активации термического распада некоторых полимеров
- •Продукты термического распада некоторых полимеров
- •Выход мономера при термическом распаде различных полимеров
- •4.3.2. Термоокислительная деструкция. Горение
- •Ограниченный кислородный показатель для некоторых полимеров
- •4.3.3. Фотодеструкция. Фотоокисление
- •4.4 Полимераналогичные превращения
- •4.4.1. Поливиниловый спирт
- •4.4.2. Химические превращения целлюлозы
- •4.4.3. Структурная модификация целлюлозы
- •Вопросы и упражнения к лекциям 11-15
2.3.2. Кинетика анионной полимеризации с обрывом цепи
Классическим примером анионной полимеризации с ярко выраженными реакциями передачи и обрыва цепи является полимеризация стирола в жидком аммиаке, инициируемая амидом щелочного металла.
1. Инициирование:
Вследствие высокой полярности жидкого аммиака активными центрами на концах растущих цепей являются свободные анионы.
2. Рост цепи:
3. Передача цепи на растворитель:
4. Обрыв цепи:
Как и для любой другой цепной полимеризации, уравнение скорости легко может быть получено, исходя из принципа стационарного состояния. Выражения для скорости роста, инициирования и обрыва цепи выглядят следующим образом:
,
(2.78)
,
(2.79)
. (2.80)
Из условия стационарности, предполагающего равенство скоростей инициирования и обрыва цепи, Vин=Vо, получаем выражение для стационарной концентрации анионов роста [m-]. Подставляя его в уравнение (2.78) для скорости роста цепи, равной скорости полимеризации, приходим к конечному результату:
.
(2.81)
Средняя степень полимеризации выражается обычным способом:
,
(2.82)
, (2.83)
, (2.84)
где
;
.
2.3.3. Живая полимеризация. Блок-сополимеры
Часто анионная полимеризация протекает в условиях, когда отсутствуют реакции обрыва и рост происходит до полного исчерпания мономера. Анионные центры остаются неизменными, потому что перенос протона (или другой положительной частицы) от растворителя не имеет места. Такие положительные анионы называются живущими полимерами. Живущие полимеры образуются при использовании растворителей (например, тетрагидрофуран, 1,2-диметоксиэтан, диоксан), неспособных обрывать растущий анион в результате передачи цепи.
Отсутствие обрыва цепи в таких реакциях легко наблюдать. Многие растущие карбанионы окрашены. Если система хорошо очищена, т.е. отсутствуют любые примеси, то цвет карбаниона сохраняется в течение всей полимеризации и не исчезает и не изменяется при 100 %-ной степени превращения. Последующее добавление к живущей полимерной системе новой порции мономера вызывает дополнительную полимеризацию. Добавленный мономер полимеризуется также количественно. Молекулярная масса линейно растет (рис.2.18.)
Впервые живую анионную полимеризацию наблюдали Абкин и Медведев в 1930-х гг., однако систематически исследовал этот процесс Шварц в 50-х гг. XX в., и к настоящему времени анионная полимеризация получила широкое распространение.
Карбанионы являются относительно более устойчивыми и, следовательно, менее реакционноспособными частицами по сравнению с карбкатионами, поэтому при анионной полимеризации неполярных мономеров в неполярных и малополярных растворителях, например, стирола или бутадиена-1,3 в бензоле, тетрагидрофуране или 1,2-диметилоксиэтилене, отсутствуют все основные реакции обрыва материальной и кинетической цепи. Полимеризация продолжается до полного исчерпания мономера, и по ее окончании активные центры (анионы) макромолекул сохраняются 1-2 недели. В течение этого периода полимеризация может быть возобновлена при добавлении новой порции мономера. Считается, что медленная дезактивация активных центров связана с реакциями, начинающимися с переноса гидридиона на противоион:
Образующийся в результате последней реакции аллильный анион неспособен инициировать анионную полимеризацию.
Причины, затрудняющие живую полимеризацию полярных мономеров, таких как (мет)акрилаты, менее ясны, предположительно их связывают с реакциями функциональных групп мономеров как с исходным металлорганическим инициатором, так и с карбанионами. Живая полимеризация полярных мономеров проводится при очень низкой температуре с тем, чтобы избежать упомянутых реакций.
Все основные признаки живой цепной полимеризации – линейный рост молекулярной массы с конверсией, узкое молекулярно-массовое распределение, возможность получения блок-сополимеров – наиболее ярко выражены для живой анионной полимеризации. В частности, именно этим методом получают на практике монодисперсные полимеры (обычно полистирол), используемые как стандарты в гель-хроматографии. При kо=0 и при kин>>kp, т.е. при скорости инициирования, намного превышающей скорость роста, скорость и степень полимеризации выражаются простыми зависимостями:
, (2.85)
,
(2.86)
где
[M0]
и [M]
- начальная
и текущая концентрации мономера; [I]
- начальная концентрация катализатора;
– степень превращения мономера;п
- число
растущих концов в макромолекуле. Из
предыдущего видно, что при инициировании
полимеризации н-С4H9Li
п
= 1;
в том случае, когда на стадии инициирования
имеет место перенос электрона и
образование ион-радикалов, п
= 2.
Живая ионная полимеризация используется в промышленности для получения блок-сополимеров. Общий метод состоит в том, что по окончании полимеризации одного мономера к его живым цепям добавляется другой мономер. В некоторых случаях важен порядок, т.е. очередность полимеризации разных мономеров. Так, живые цепи полистирола могут инициировать полимеризацию метилметакрилата, но не наоборот. Отсюда следует, что существуют лишь двух- и трехблочные (в зависимости от инициатора) блок-сополимеры этих мономеров. В общем случае путем последовательной живой анионной полимеризации разных мономеров могут быть получены мультиблочные сополимеры, содержащие много разных блоков. Наиболее известными из блок-сополимеров являются так называемые термоэластопласты, в которых один блок относится к эластомерам, другой - к пластикам. Термоэластопласты обладают комплексом необычных свойств, промежуточных между свойствами каучуков и пластиков. Среди термоэластопластов наиболее распространены блок-сополимеры стирола с бутадиеном и изопреном.
Хотя при полимеризации, протекающей с образованием живущих полимеров, не должен происходить обрыв цепи, присутствие активных загрязнителей, примесей может изменить это положение. Обычно применяют специальные меры для очистки системы от кислорода, двуокиси углерода и воды. Первые два присоединяясь к растущим анионам могут образовывать перокси- и карбокси-анионы. Эти анионы недостаточно активны для продолжения роста, и кинетическая цепь обрывается. Вода и другие вещества с кислыми атомами водорода (например, карбоновая кислота) обрывают цепь переносом протона. Константа переноса для воды при полимеризации стирола Na-нафталином при 25ºС равна приблизительно 10, поэтому присутствие воды в заметных количествах может ограничивать молекулярную массу полимера. Однако константа переноса для этанола равна только 0,001, и его присутствие не мешает образованию полимера, так как реакция обрыва протекает медленно. На практике живущие концы полимеров при желании обрывают (обычно при 100 %-ной степени превращения) добавлением таких агентов переноса, как вода.