
- •Оглавление
- •Раздел I. Общие сведения о высокомолекулярных соединениях
- •1.1. Особенности полимерного состояния вещества Введение
- •1.1.1. Полимеры, общие определения
- •1.1.2. Различия в свойствах высоко- и низкомолекулярных соединений
- •1.2. Образование, получение и распространение полимеров
- •Содержание различных веществ в теле человека
- •Некоторые аминокислоты, входящие в состав белков
- •Содержание различных оксидов в базальтовых породах, мас. %
- •1.3. Классификация полимеров
- •1.3.1. Принципы классификации полимеров
- •Типичные конденсационные полимеры
- •Типичные полимеризационные полимеры
- •Классификация, молекулярно-массовые характеристики и стереохимия полимеров
- •1.3.2. Тривиальная, рациональная и систематическая номенклатура полимеров
- •Названия некоторых линейных полимеров
- •1.3.3. Классификация и номенклатура сополимеров
- •Названия некоторых элементорганических и неорганических полимеров
- •Название основных типов сополимеров
- •1.4. Молекулярно-массовые характеристики полимеров
- •1.4.1. Распределение макромолекул по молекулярным массам
- •1.4.2. Моменты распределения и средние молекулярные массы
- •1.4.3. Параметр полидисперсности
- •1.4.4. Методы определения молекулярной массы полимеров
- •1.5. Стереохимия полимеров
- •1.5.1. Химическая изомерия звеньев
- •1.5.3. Стереоизомерия
- •Температуры кристаллизации и плавления полидиенов
- •Вопросы и упражнения к лекциям 1-2
- •Раздел II. Синтез полимеров методами цепной и ступенчатой полимеризации
- •2.1. Радикальная полимеризации
- •2.1.1. Инициирование радикальной полимеризации
- •Важнейшие инициаторы радикальной полимеризации
- •2.1.2. Элементарные реакции и кинетика полимеризации
- •1. Инициирование.
- •2. Рост цепи.
- •3. Обрыв цепи.
- •Вклад диспропорционирования в реакциях обрыва (λ) для различных мономеров
- •Относительные константы передачи цепи на инициатор Син при 60ºС
- •Относительные константы передачи цепи на мономер См
- •Значения относительных констант передачи цепи Сs·104 на некоторые соединения при 60-70ºС
- •Значения относительных констант передачи цепи на полимер Ср
- •Ингибиторы радикальной полимеризации.
- •Константы ингибирования Сz, 50-60ºС
- •Константы скоростей элементарных реакций роста и обрыва при радикальной полимеризации некоторых мономеров, 20-25ºС
- •2.1.3. Молекулярно-массовое распределение при радикальной полимеризации
- •2.1.4. Влияние температуры и давления на радикальную полимеризацию
- •2.1.5. Диффузионная модель обрыва цепи. Гель-эффект
- •Влияние степени превращения мономера q на полимеризацию метилметакрилата, 22,5ºС
- •2.1.6. Каталитическая передача цепи
- •2.1.7. Псевдоживая радикальная полимеризация
- •Константы обратимого ингибирования псевдоживой полимеризации стирола в присутствии темпо
- •2.1.8. Эмульсионная полимеризация
- •Эмульсионная полимеризация смеси стирола и бутадиена
- •Вопросы и упражнения к лекциям 3-5
- •2.2. Катионная полимеризация
- •2.2.1. Элементарные реакции. Кинетика
- •Константы скорости роста в катионной полимеризации
- •Константы передачи цепи на мономер при катионной полимеризации стирола
- •Константы передачи цепи на мономер при катионной полимеризации изобутилена в различных растворителях
- •Контсанты передачи цепи при катионной полимеризации стирола
- •2.2.2. Псевдокатионная и псевдоживая катионная полимеризация
- •2.2.3. Влияние реакционной среды
- •Влияние растворителя на катионную полимеризацию стирола, инициированную hClO4
- •2.3. Анионная полимеризация
- •2.3.1. Основные реакции инициирования
- •2.3.2. Кинетика анионной полимеризации с обрывом цепи
- •2.3.3. Живая полимеризация. Блок-сополимеры
- •2.3.4. Полимеризация с переносом группы
- •2.3.5. Влияние температуры, растворителя и противоиона
- •Влияние растворителя на анионную «живую» полимеризацию стирола, 25ºС, натрий-нафталиновый комплекс 3·10-3 моль/л
- •Кинетические и термодинамические характеристики реакции роста цепи при живой полимеризации стирола, инициируемой натрий-нафталином, 20ºС, тетрагидрофуран
- •2.3.6. Ассоциация
- •2.4. Ионно-координационная полимеризация
- •Примеры стереоспецифической полимеризации
- •2.4.1. Катализаторы Циглера-Натта. Исторический аспект
- •Компоненты катализаторов Циглера-Натта
- •2.4.2. Полимеризация на гетерогенных катализаторах Циглера-Натта
- •Влияние растворителя на анионную полимеризацию 1,3-диенов, инициируемую н-бутиллитием
- •2.5. Синтез гетероцепных полимеров ионной полимеризацией
- •2.5.1. Карбонилсодержащие соединения
- •Предельные температуры и концентрации мономеров при полимеризации альдегидов
- •2.5.2. Полимеризация эфиров и эпоксидов с раскрытием цикла
- •2.5.3. Полимеризация лактамов и лактонов
- •2.5.4. Другие гетероциклы
- •2.6. Общие вопросы синтеза полимеров
- •2.6.1. Термодинамика синтеза
- •Энтальпии и энтропии полимеризации некоторых мономеров, 25ºС
- •Энтальпии δн0, энтропии δs0, функции Гиббса δg0 и предельные температуры полимеризации Тп альдегидов, 25ºС
- •Энтальпии δн0, энтропии δs0, функции Гиббса δg0 полимеризации циклоалканов при 25ºС
- •2.6.2. Сопоставление ионной и радикальной полимеризации
- •2.6.3. Об общности процессов псевдоживой полимеризации
- •2.7. Ступенчатая полимеризация
- •2.7.1. Равновесная и неравновесная поликонденсация
- •Влияние константы равновесия к на степень завершенности реакции поликонденсации х и среднечисловую степень полимеризации
- •Влияние воды на степень полимеризации при поликонденсации
- •2.7.2. Кинетика поликонденсации
- •Константы скорости реакции этерификации в гомолитических рядах одно- и двухосновных кислот, 25ºС
- •2.7.3. Молекулярно-массовое распределение полимера при поликонденсации
- •2.7.4. Разветвленные и сшитые полимеры
- •2.7.5. Фенопласты, аминопласты
- •2.7.6. Полиамиды, полиэфиры, поликарбонаты
- •2.7.7. Полиуретаны. Полисилоксаны
- •2.7.8. Жесткоцепные ароматические полимеры
- •Свойства полиариленэфирсульфонов
- •2.7.9. Сверхразветвленные полимеры
- •Очистка — б — очистка — а — очистка и т. Д.
- •Вопросы и упражнения к лекциям 9-10
- •Раздел 3. Цепная сополимеризация
- •3.1. Количественная теория сополимеризации
- •3.1.1. Кривые состава сополимера и относительные активности мономеров
- •3.1.2. Состав и микроструктура сополимера. Статистический подход
- •Доля последовательностей различной длины из мономера 1 (q1n) в эквимолярных сополимерах различных типов
- •3.1.3. Многокомпонентная сополимеризация
- •Предсказанные и определенные экспериментально составы сополимеров, полученных радикальной тер- и тетраполимеризацией
- •3.1.4. Сополимеризации до глубоких конверсии
- •3.2. Радикальная сополимеризация
- •3.2.1. Скорость сополимеризации
- •Корреляция между и r1 · r2 при радикальной сополимеризации
- •3.2.2. Природа эффекта предконцевого звена
- •Относительные активности мономеров при сополимеризации стирола (1) с акрилонитрилом (2), определенные в рамках моделей концевого и предконцевого звена, 60°с
- •3.2.3. Влияние температуры и давления на радикальную сополимеризацию
- •Значения относительных активностей мономеров при разных температурах и отношения частотных факторов
- •Влияние давления на сополимеризацию некоторых мономеров
- •3.2.4. Чередующаяся сополимеризация
- •1 Бутилметакрилат - диметилбутадиен, 2 - бутилметакрилат - (с2н5)3АlСl - диме-тилбутадиен; f1 мольная доля бутилметакрилата в исходной мономерной смеси
- •3.2.5. Влияние реакционной среды
- •3.2.6. Связь строения мономера и радикала с реакционной способностью.
- •Сополимеризация винилацетата (1) с хлорзамещенными этилена (2)
- •Влияние резонансного фактора на величину константы скорости роста, 20-30°с
- •Эмпирические и расчетные квантово-химические резонансные параметры строения мономеров и радикалов
- •Значения константы скорости реакции роста и параметра е некоторых мономеров, 25-30°с
- •Значения константы скорости реакции роста и параметра е пара-замещенных стирола, 60°с
- •Значения параметров реакционной способности мономеров схемы q-e
- •Относительные активности при сополимеризации некоторых мономеров
- •3.3. Ионная сополимеризация
- •3.3.1. Катионная сополимеризация
- •Катионная сополимеризация некоторых мономеров
- •3.3.2. Анионная сополимеризация
- •Анионная сополимеризация стирола (1) с бутадиеном-1,3 (2), инициатор н-с4н9Li
- •Влияние растворителя и противоиона на состав сополимера при сополимеризации стирола с изопреном
- •3.3.3. Сополимеризация на катализаторах Циглера-Натта
- •Реакционная способность различных мономеров в сополимеризации Циглера-Натта
- •Раздел 4. Химические превращения полимеров
- •4.1. Характерные особенности макромолекул как реагентов
- •4.1.1. Влияние соседних звеньев
- •4.1.2. Макромолекулярные и надмолекулярные эффекты
- •4.1.3. Кооперативные взаимодействия7
- •4.2. Сшивание полимеров
- •4.2.1. Высыхание красок
- •4.2.2. Вулканизация каучуков
- •4.2.3. Отверждение эпоксидных смол
- •4.3. Деструкция полимеров
- •4.3.1. Термическая деструкция. Циклизация
- •Температуры начала разложения и энергии активации термического распада некоторых полимеров
- •Продукты термического распада некоторых полимеров
- •Выход мономера при термическом распаде различных полимеров
- •4.3.2. Термоокислительная деструкция. Горение
- •Ограниченный кислородный показатель для некоторых полимеров
- •4.3.3. Фотодеструкция. Фотоокисление
- •4.4 Полимераналогичные превращения
- •4.4.1. Поливиниловый спирт
- •4.4.2. Химические превращения целлюлозы
- •4.4.3. Структурная модификация целлюлозы
- •Вопросы и упражнения к лекциям 11-15
Константы скорости роста в катионной полимеризации
Мономер |
Инициатор |
Растворитель |
Т, ºС |
|
Изобутилен |
ионизирующее излучение |
в массе |
0 |
15000 |
Стирол |
-«-«- |
-«-«- |
15 |
350 |
n-Метоксистирол |
-«-«- (С6Н5)3С+SbCl6 |
-«-«- СН2Cl2 |
0 10 |
300 36 |
n-Винилкарбазол |
(С6Н5)3С+SbF6 |
-«-«- |
20 |
60 |
Изопропилви-ниловый эфир |
(С6Н5)3С+SbCl6 |
-«-«- |
0 |
1,1 |
ионизирующее излучение |
-«-«- |
0 |
8,6 | |
Изопрен |
-«-«- |
в массе |
0 |
0,2 |
Реакции передачи цепи. Две реакции определяют молекулярную массу полимера бимолекулярная реакция передачи цепи на мономер и спонтанная мономолекулярная на противоионы. В обоих случаях отрывается протон от предконцевого атома углерода макрокатиона:
или
Передача цепи на мономер – одна из наиболее частых реакций обрыва цепи при катионной полимеризации.
Следует отметить, что кинетическая цепь при этом не обрывается, так как происходит регенерирование инициирующей растущей пары. Каждый единичный комплекс катализатор – сокатализатор приводит к образованию многих макромолекул.
Поскольку передача цепи на мономер кинетически не отличима от роста, относительные скорости передачи и роста даются отношением kпер.м к kp, которое представляет собой константу передачи цепи для мономера СM. Значение СM определяет молекулярную массу полимера, если обрыв цепи в результате других процессов незначителен. Чем больше значение СM, тем меньше молекулярный вес образующегося полимера.
При полимеризации алкенов реакция передачи цепи на мономер может осуществляться по альтернативному механизму путем переноса гидрид-иона от мономера к активному центру:
Движущей силой этой реакции в приведенном примере является образование аллильного катиона. Однако это не приводит к таким катастрофическим последствиям, к каким приводит образование аллильного радикала вследствие деградационного переноса цепи при радикальной полимеризации.
Реакция обрыва кинетической цепи. Приведенные выше реакции не вызывают обрыва кинетической цепи, поскольку сопровождаются регенерацией активных центров или инициатора. Гибель активных центров или обрыв кинетической цепи в катионной полимеризации происходит в результате присоединения противоиона или его фрагмента к карбкатиону. Ниже приведены примеры обеих реакций:
Это происходит в том случае, когда противоион достаточно нуклеофилен, так что происходит образование ковалентной связи
,
например, при полимеризации стирола, катализируемой трифторуксусной кислотой
Обрыв цепи путем комбинирования отличается от других видов тем, что он приводит к уменьшению концентрации комплекса катализатор – сокатализатор.
В качестве передатчиков или обрывателей кинетической цепи в катионной полимеризации могут выступать вещества примесного характера или специально введенные, способные генерировать анионы при атаке карбкатиона, такие как спирты, кислоты, ангидриды, простые и сложные эфиры, амины.
Возможно, что обрыв цепи аминами происходит не путем передачи цепи, а путем образования стабильных четвертичных ионов, которые не реакционноспособны, например,
Скорость полимеризации. Уравнение скорости катионной полимеризации может быть получено так же как и уравнение скорости радикальной полимеризации – исходя из принципа стационарного состояния. Отличие состоит в том, что при катионной полимеризации реакция обрыва кинетической цепи является мономолекулярной. Уравнение имеет вид:
,
(2.77)
где К константа равновесия реакции комплексообразования инициатора и соинициатора; [I], [IX] - концентрации инициатора и соинициатора; kин, kр, k0 константы скоростей инициирования, роста и обрыва цепи.
Следует,
однако, подчеркнуть, что для многих
случаев катионной полимеризации
допущение постоянства не совсем
правильно. Иногда ионная полимеризация
протекает так быстро, что стационарное
состояние не достигается. Некоторые
из этих реакций (например, полимеризация
изобутилена в присутствииAlCl3
при -100ºС) могут завершаться в течение
секунд или минут. Даже при более медленной
реакции стационарное состояние может
быть достигнуто только на поздних
стадиях полимеризации. Так, стационарное
состояние при катализируемой ReCl5
полимеризации стирола, протекающей
при 0ºС, достигается только при 103104
с, когда степень превращения мономера
составляет приблизительно 20 – 30 %.
Еще одним ограничением при использовании различных кинетических уравнений является неопределенность представлений о том, гомогенны или гетерогенны многие системы катализатор – мономер – растворитель.
Однако было установлено, что, несмотря на затруднения, приведенные кинетические уравнения справедливы.
Степень полимеризации. Выражение для степени полимеризации при катионной полимеризации получается, исходя из тех же соображений, что и в случае радикальной полимеризации - путем деления скорости роста на сумму скоростей обрыва материальной цепи. При необходимости учета реакций передачи цепи более удобно использовать обратную степень полимеризации, что приводит к выражению, весьма напоминающему основное уравнение кинетики радикальной полимеризации:
. (2.78)
Здесь СM=kM /kp СS=kS /kp - относительные константы передачи цепи на мономер и растворитель; kC - абсолютная константа скорости спонтанной передачи цепи на противоион.
Молекулярно-массовое
распределение. Молекулярно-массовое
распределение в катионной полимеризации
аналогично тому, что имеет место на
начальной стадии радикальной полимеризации
в присутствии передатчика цепи и (или)
при обрыве кинетической цепи в результате
реакции диспропорционирования
макрорадикалов. Эта аналогия обусловлена
тем, что в обоих случаях при обрыве одна
кинетическая цепь образует одну
макромолекулу. Отсюда следует, что
на начальной стадии катионной
полимеризации
=2,
однако с увеличением конверсии
полидисперсность существенно возрастает.
Кинетические уравнения радикальной и катионной полимеризации имеют существенные отличия. Так, при радикальной полимеризации зависимость Rp от Rи имеет порядок 0,5, тогда как при катионной – первый. Различие между этими типами полимеризации является следствием разных способов обрыва. При радикальной полимеризации обрыв растущих цепей – реакция второго порядка, тогда как при ионной - первого.
Константы передачи цепи на мономер приведены в табл. 2.13 и 2.14 на примеси – табл. 2.15.
Таблица 2.13