
- •Оглавление
- •Раздел I. Общие сведения о высокомолекулярных соединениях
- •1.1. Особенности полимерного состояния вещества Введение
- •1.1.1. Полимеры, общие определения
- •1.1.2. Различия в свойствах высоко- и низкомолекулярных соединений
- •1.2. Образование, получение и распространение полимеров
- •Содержание различных веществ в теле человека
- •Некоторые аминокислоты, входящие в состав белков
- •Содержание различных оксидов в базальтовых породах, мас. %
- •1.3. Классификация полимеров
- •1.3.1. Принципы классификации полимеров
- •Типичные конденсационные полимеры
- •Типичные полимеризационные полимеры
- •Классификация, молекулярно-массовые характеристики и стереохимия полимеров
- •1.3.2. Тривиальная, рациональная и систематическая номенклатура полимеров
- •Названия некоторых линейных полимеров
- •1.3.3. Классификация и номенклатура сополимеров
- •Названия некоторых элементорганических и неорганических полимеров
- •Название основных типов сополимеров
- •1.4. Молекулярно-массовые характеристики полимеров
- •1.4.1. Распределение макромолекул по молекулярным массам
- •1.4.2. Моменты распределения и средние молекулярные массы
- •1.4.3. Параметр полидисперсности
- •1.4.4. Методы определения молекулярной массы полимеров
- •1.5. Стереохимия полимеров
- •1.5.1. Химическая изомерия звеньев
- •1.5.3. Стереоизомерия
- •Температуры кристаллизации и плавления полидиенов
- •Вопросы и упражнения к лекциям 1-2
- •Раздел II. Синтез полимеров методами цепной и ступенчатой полимеризации
- •2.1. Радикальная полимеризации
- •2.1.1. Инициирование радикальной полимеризации
- •Важнейшие инициаторы радикальной полимеризации
- •2.1.2. Элементарные реакции и кинетика полимеризации
- •1. Инициирование.
- •2. Рост цепи.
- •3. Обрыв цепи.
- •Вклад диспропорционирования в реакциях обрыва (λ) для различных мономеров
- •Относительные константы передачи цепи на инициатор Син при 60ºС
- •Относительные константы передачи цепи на мономер См
- •Значения относительных констант передачи цепи Сs·104 на некоторые соединения при 60-70ºС
- •Значения относительных констант передачи цепи на полимер Ср
- •Ингибиторы радикальной полимеризации.
- •Константы ингибирования Сz, 50-60ºС
- •Константы скоростей элементарных реакций роста и обрыва при радикальной полимеризации некоторых мономеров, 20-25ºС
- •2.1.3. Молекулярно-массовое распределение при радикальной полимеризации
- •2.1.4. Влияние температуры и давления на радикальную полимеризацию
- •2.1.5. Диффузионная модель обрыва цепи. Гель-эффект
- •Влияние степени превращения мономера q на полимеризацию метилметакрилата, 22,5ºС
- •2.1.6. Каталитическая передача цепи
- •2.1.7. Псевдоживая радикальная полимеризация
- •Константы обратимого ингибирования псевдоживой полимеризации стирола в присутствии темпо
- •2.1.8. Эмульсионная полимеризация
- •Эмульсионная полимеризация смеси стирола и бутадиена
- •Вопросы и упражнения к лекциям 3-5
- •2.2. Катионная полимеризация
- •2.2.1. Элементарные реакции. Кинетика
- •Константы скорости роста в катионной полимеризации
- •Константы передачи цепи на мономер при катионной полимеризации стирола
- •Константы передачи цепи на мономер при катионной полимеризации изобутилена в различных растворителях
- •Контсанты передачи цепи при катионной полимеризации стирола
- •2.2.2. Псевдокатионная и псевдоживая катионная полимеризация
- •2.2.3. Влияние реакционной среды
- •Влияние растворителя на катионную полимеризацию стирола, инициированную hClO4
- •2.3. Анионная полимеризация
- •2.3.1. Основные реакции инициирования
- •2.3.2. Кинетика анионной полимеризации с обрывом цепи
- •2.3.3. Живая полимеризация. Блок-сополимеры
- •2.3.4. Полимеризация с переносом группы
- •2.3.5. Влияние температуры, растворителя и противоиона
- •Влияние растворителя на анионную «живую» полимеризацию стирола, 25ºС, натрий-нафталиновый комплекс 3·10-3 моль/л
- •Кинетические и термодинамические характеристики реакции роста цепи при живой полимеризации стирола, инициируемой натрий-нафталином, 20ºС, тетрагидрофуран
- •2.3.6. Ассоциация
- •2.4. Ионно-координационная полимеризация
- •Примеры стереоспецифической полимеризации
- •2.4.1. Катализаторы Циглера-Натта. Исторический аспект
- •Компоненты катализаторов Циглера-Натта
- •2.4.2. Полимеризация на гетерогенных катализаторах Циглера-Натта
- •Влияние растворителя на анионную полимеризацию 1,3-диенов, инициируемую н-бутиллитием
- •2.5. Синтез гетероцепных полимеров ионной полимеризацией
- •2.5.1. Карбонилсодержащие соединения
- •Предельные температуры и концентрации мономеров при полимеризации альдегидов
- •2.5.2. Полимеризация эфиров и эпоксидов с раскрытием цикла
- •2.5.3. Полимеризация лактамов и лактонов
- •2.5.4. Другие гетероциклы
- •2.6. Общие вопросы синтеза полимеров
- •2.6.1. Термодинамика синтеза
- •Энтальпии и энтропии полимеризации некоторых мономеров, 25ºС
- •Энтальпии δн0, энтропии δs0, функции Гиббса δg0 и предельные температуры полимеризации Тп альдегидов, 25ºС
- •Энтальпии δн0, энтропии δs0, функции Гиббса δg0 полимеризации циклоалканов при 25ºС
- •2.6.2. Сопоставление ионной и радикальной полимеризации
- •2.6.3. Об общности процессов псевдоживой полимеризации
- •2.7. Ступенчатая полимеризация
- •2.7.1. Равновесная и неравновесная поликонденсация
- •Влияние константы равновесия к на степень завершенности реакции поликонденсации х и среднечисловую степень полимеризации
- •Влияние воды на степень полимеризации при поликонденсации
- •2.7.2. Кинетика поликонденсации
- •Константы скорости реакции этерификации в гомолитических рядах одно- и двухосновных кислот, 25ºС
- •2.7.3. Молекулярно-массовое распределение полимера при поликонденсации
- •2.7.4. Разветвленные и сшитые полимеры
- •2.7.5. Фенопласты, аминопласты
- •2.7.6. Полиамиды, полиэфиры, поликарбонаты
- •2.7.7. Полиуретаны. Полисилоксаны
- •2.7.8. Жесткоцепные ароматические полимеры
- •Свойства полиариленэфирсульфонов
- •2.7.9. Сверхразветвленные полимеры
- •Очистка — б — очистка — а — очистка и т. Д.
- •Вопросы и упражнения к лекциям 9-10
- •Раздел 3. Цепная сополимеризация
- •3.1. Количественная теория сополимеризации
- •3.1.1. Кривые состава сополимера и относительные активности мономеров
- •3.1.2. Состав и микроструктура сополимера. Статистический подход
- •Доля последовательностей различной длины из мономера 1 (q1n) в эквимолярных сополимерах различных типов
- •3.1.3. Многокомпонентная сополимеризация
- •Предсказанные и определенные экспериментально составы сополимеров, полученных радикальной тер- и тетраполимеризацией
- •3.1.4. Сополимеризации до глубоких конверсии
- •3.2. Радикальная сополимеризация
- •3.2.1. Скорость сополимеризации
- •Корреляция между и r1 · r2 при радикальной сополимеризации
- •3.2.2. Природа эффекта предконцевого звена
- •Относительные активности мономеров при сополимеризации стирола (1) с акрилонитрилом (2), определенные в рамках моделей концевого и предконцевого звена, 60°с
- •3.2.3. Влияние температуры и давления на радикальную сополимеризацию
- •Значения относительных активностей мономеров при разных температурах и отношения частотных факторов
- •Влияние давления на сополимеризацию некоторых мономеров
- •3.2.4. Чередующаяся сополимеризация
- •1 Бутилметакрилат - диметилбутадиен, 2 - бутилметакрилат - (с2н5)3АlСl - диме-тилбутадиен; f1 мольная доля бутилметакрилата в исходной мономерной смеси
- •3.2.5. Влияние реакционной среды
- •3.2.6. Связь строения мономера и радикала с реакционной способностью.
- •Сополимеризация винилацетата (1) с хлорзамещенными этилена (2)
- •Влияние резонансного фактора на величину константы скорости роста, 20-30°с
- •Эмпирические и расчетные квантово-химические резонансные параметры строения мономеров и радикалов
- •Значения константы скорости реакции роста и параметра е некоторых мономеров, 25-30°с
- •Значения константы скорости реакции роста и параметра е пара-замещенных стирола, 60°с
- •Значения параметров реакционной способности мономеров схемы q-e
- •Относительные активности при сополимеризации некоторых мономеров
- •3.3. Ионная сополимеризация
- •3.3.1. Катионная сополимеризация
- •Катионная сополимеризация некоторых мономеров
- •3.3.2. Анионная сополимеризация
- •Анионная сополимеризация стирола (1) с бутадиеном-1,3 (2), инициатор н-с4н9Li
- •Влияние растворителя и противоиона на состав сополимера при сополимеризации стирола с изопреном
- •3.3.3. Сополимеризация на катализаторах Циглера-Натта
- •Реакционная способность различных мономеров в сополимеризации Циглера-Натта
- •Раздел 4. Химические превращения полимеров
- •4.1. Характерные особенности макромолекул как реагентов
- •4.1.1. Влияние соседних звеньев
- •4.1.2. Макромолекулярные и надмолекулярные эффекты
- •4.1.3. Кооперативные взаимодействия7
- •4.2. Сшивание полимеров
- •4.2.1. Высыхание красок
- •4.2.2. Вулканизация каучуков
- •4.2.3. Отверждение эпоксидных смол
- •4.3. Деструкция полимеров
- •4.3.1. Термическая деструкция. Циклизация
- •Температуры начала разложения и энергии активации термического распада некоторых полимеров
- •Продукты термического распада некоторых полимеров
- •Выход мономера при термическом распаде различных полимеров
- •4.3.2. Термоокислительная деструкция. Горение
- •Ограниченный кислородный показатель для некоторых полимеров
- •4.3.3. Фотодеструкция. Фотоокисление
- •4.4 Полимераналогичные превращения
- •4.4.1. Поливиниловый спирт
- •4.4.2. Химические превращения целлюлозы
- •4.4.3. Структурная модификация целлюлозы
- •Вопросы и упражнения к лекциям 11-15
Эмульсионная полимеризация смеси стирола и бутадиена
Компонент |
Количество, вес.ч. |
Стирол |
25 |
Бутадиен |
75 |
Вода |
180 |
Эмульгатор (Dresinate 731) |
5,0 |
Меркаптан |
0,5 |
NaOH |
0,061 |
Гидроперекись кумола |
0,17 |
FeSO4 |
0,017 |
Na4P2O710H2O |
1,5 |
Фруктоза |
0,5 |
С точки зрения природы основных процессов, протекающих в реакционной системе, эмульсионная полимеризация может быть разбита на три этапа.
Первый этап является коллоидно-химическим, поскольку его главным результатом является возникновение агрегатов – устойчивых полимер-мономерных частиц (ПМЧ). Существуют три пути их формирования:
1. При эмульсионной полимеризации практически не растворимых в воде мономеров стирола (0,1 г/л) и бутадиена (0,8 г/л) первичные радикалы, образовавшиеся при распаде инициатора в водной фазе, диффундируют в мицеллы, где инициируют полимеризацию находящегося там мономера. В капли радикалы практически не попадают, т.к. суммарная поверхность мицелл примерно на два порядка превышает суммарную поверхность капель.
2. Мономеры, заметно растворимые в воде - винилхлорид (4-15 г/л), винилацетат (25 г/л), полимеризуются достаточно интенсивно в водной фазе. Поскольку соответствующие полимеры в воде не растворимы, в результате образуются ПМЧ, стабилизированные ПАВ, которые находятся в водной фазе.
3. Параллельно с образованием первичных частиц по тому или другому механизму происходит их слипание (коагуляция). В результате удельная поверхность частиц, а с ней и свободная поверхностная энергия уменьшаются, и система становится более устойчивой.
К концу первого этапа число частиц уменьшается на 2-3 порядка и далее не изменяется. Следует подчеркнуть, что размер образовавшихся ПМЧ соизмерим с размером мицелл и много меньше размера мономерных капель. В зависимости от природы мономера на первом этапе образуется 2-12% полимера, для частично растворимых в воде мономеров этот этап заканчивается быстрее.
Второй этап эмульсионной полимеризации протекает в псевдостационарных условиях, которые характеризуются относительным постоянством числа частиц, концентрации мономера в них и постоянной концентрацией радикалов роста.
Концентрация мономеров в ПМЧ (20-60%) поддерживается на одном уровне за счет того, что убыль мономера в результате полимеризации компенсируется его диффузией в ПМЧ из мономерных капель. Ниже приведены стационарные концентраты мономеров в ПМЧ, выраженные в объемных процентах:
Этилен |
Винилхлорид |
Бутадиен |
Стирол |
Метилметакрилат |
Винилацетат |
20 |
30 |
50 |
60 |
71 |
85 |
Стационарная концентрация радикалов роста во время второго этапа эмульсионной полимеризации является следствием постоянства числа ПМЧ, которая составляет величину порядка 1014 в см3. Если каждая из частиц содержит по одному радикалу, то их средняя концентрация по объему составит величину порядка 10-6 моль/л. Это примерно на два порядка превышает среднюю стационарную концентрацию радикалов роста по сравнению с полимеризацией в растворе или блоке и, следовательно, по сравнению с ними скорость обрыва в эмульсионной полимеризации должна быть на четыре порядка выше.
Третий этап. Попадание второго радикала в частицу приводит к немедленной гибели обоих в результате реакции бимолекулярного обрыва. Радикалы поступают в частицы с постоянной скоростью - один радикал в период времени, равный примерно 10 с. Это означает, что каждая ПМЧ периодически становится активной и неактивной в течение равных промежутков времени (5-10 с). В целом, в любой момент времени половина частиц содержит по одному радикалу, другая - ни одного, в среднем же на все частицы приходится по 0,5 радикала. Построенная на этом принципе кинетическая теория Эварта и Смита хорошо описывает эмульсионную полимеризацию практически не растворимых в воде мономеров, например стирола.
В общем случае среднее число радикалов, приходящихся на одну ПМЧ, может быть более или менее 0,5. Первое может иметь место из-за наличия заметного количества больших частиц и не очень высоких скоростей бимолекулярного обрыва, например, из-за гель-эффекта. Второе обычно является следствием выхода радикалов из частиц в водную фазу. Из рассмотренного выше следует, что скорость полимеризации в одной частице v и общая скорость эмульсионной полимеризации дописываются простыми соотношениями:
, (2.70)
,
(2.71)
где
[М]
концентрация мономера,
среднее
число радикалов в ПМЧ, N
число ПМЧ, NA
число
Авогадро. Отношение N/NA
называется
частичной концентрацией, его присутствие
в (2.71) необходимо для того, чтобы получить
обычную размерность скорости
моль/(лс).
Уравнение (2.71) не содержит скорости
инициирования, однако, она присутствует
там в неявной форме, поскольку, наряду
с концентрацией ПАВ, определяет число
ПМЧ:
,
(2.72)
где 0,37 < К <0,53 постоянная, характеризующая эффективность захвата радикалов ПМЧ; Vин - общая скорость инициирования; фактор роста, т.е. постоянная, характеризующая скорость увеличения объема частицы; qs площадь, занимаемая одной молекулой ПАВ в адсорбционном слое.
Применительно к одной частице, степень полимеризации может быть выражена обычным путем:
, (2.73)
где v0 скорость гибели радикалов в ПМЧ. Из рассмотренного выше механизма следует, что скорость обрыва и скорость инициирования vин полимеризации в ПМЧ равны и определяются скоростью поступления радикалов в частицу. Отсюда следует:
, (2.74)
где Vин общая скорость инициирования, определяемая скоростью распада инициатора. С учетом (2.73) и (2.74) окончательно имеем:
. (2.75)
В том случае, когда в системе присутствует активный передатчик цепи, в уравнение (2.75) вводится соответствующий член, учитывающий реакцию передачи:
, (2.76)
где kS константа скорости реакции передачи цепи; [S] концентрация передатчика в ПМЧ.
Из
уравнений (2.71) и (2.75) следует, что
увеличение числа частиц приводит к
одновременному возрастанию скорости
и степени полимеризации. В этом отношении
эмульсионная полимеризация принципиально
отличается от радикальной полимеризации
в массе или растворителе, где увеличение
одного обычно приводит к уменьшению
другого. На рис. 2.16 отражены характерные
черты кинетики эмульсионной полимеризации.
Видно, что скорость и степень
полимеризации изменяются мало в
достаточно большом интервале
конверсии и сильно зависят от концентрации
эмульгатора.
Молекулярно-массовое
распределение при эмульсионной
полимеризации (=1,5-2)
обычно уже по сравнению с радикальной
полимеризацией в массе или растворителе
до глубоких конверсий (
=2-5).
Это связано с тем, что в течение
большей части процесса (второй этап)
молекулярная масса образующегося
полимера изменяется незначительно,
поскольку на этом этапе N,
[M],
kp,
Vин,
остаются
практически постоянными. Размер частиц
конечного продукта эмульсионной
полимеризации, называемого латексом,
зависит от концентрации эмульгатора
и находится в интервале 50-100 нм.