Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
75
Добавлен:
23.02.2015
Размер:
44.54 Кб
Скачать

Лабораторная работа № 13 измерение скорости прецессии гироскопа

Цель работы: изучение основных закономерностей гироскопа; измерение скорости прецессии гироскопа, определение осевого момента инерции гироскопа.

Краткая теория

Аксиально-симметричное тело (тело, обладающее цилиндрической симметрией), которое очень быстро вращается вокруг оси симметрии, называется гироскопом. Примером его могут служить волчок или диск, быстро вращающиеся вокруг своей оси, проходящей через центр перпендикулярно поверхности.

Пусть гироскоп закреплен в точке центра масс, но его ось может свободно поворачиваться в любом направлении. На практике такое закрепление осуществляется с помощью карданного подвеса. Схематически такое закрепление изображено на рис.1. Пусть также к гироскопу приложена внешняя сила F, создающая момент внешней силы M.

В общем случае при действии на вращающееся тело внешнего момента сил возможно движение оси вращения тела на поверхности конуса вокруг его геометрической оси. Это так называемая нутация. Однако можно показать, что при очень большой угловой скорости вращения тела , угловая скорость нутации очень мала, то есть при рассмотрении движения оси гироскопа нутацией можно пренебречь. Таким образом, можно считать, что ось вращения все время совпадает с осью симметрии гироскопа и, следовательно, момент импульса его L=J , где J - момент инерции гироскопа.

В отсутствии момента внешних сил, в силу закона сохранения момента импульса, направление оси вращения остается постоянным. На этом основано, в частности, устройство гироскопического компаса. При наличии внешнего момента сил ось вращения, совпадающая с осью симметрии тела, будет двигаться, и изменять свое направление в пространстве. Это движение под действием момента внешних сил называется процессией гироскопа.

Основное свойство гироскопа, которое позволяет объяснить его движение под действием момента внешних сил, состоит в том, что вектор момента импульсаL примерно совпадает с вектором угловой скорости, направленным примерно вдоль оси симметрии гироскопа, вокруг которой происходит вращение. Как уже отмечалось, эти три направления, строго говоря, не совпадают. Однако отклонения от совпадения очень малы, и ими можно пренебречь.

Для описания движения гироскопа удобно использовать уравнение моментов

так как изменение направления описывает непосредственно движение его оси. Зная #, направление движения оси можно определить по соотношению #. Как видно из рис.1, ось гироскопа расположена горизонтально, а сила создает момент, направленный перпендикулярно плоскости чертежа. Если бы гироскоп не находился в быстром вращении, то под действием силы его ось должна была бы наклонится вправо.

Но так, как тело вращается, то направление, а значит и направление оси гироскопа, можно изменить только под действием момента силы. Поскольку, то конец оси начинает двигаться в направлении, то есть в горизонтальной плоскости. Если сохраняет постоянное значение (например, если F создается грузом, подвешенным к оси гироскопа на некотором расстоянии от точки опоры), то движение конца оси происходит с постоянной угловой скоростью. Ось гироскопа вращается вокруг вертикальной оси, проходящей через точку опоры гироскопа, с угловой скоростью прецессии, направленной вдоль той же оси. В результате прецессии полная скорость вращения не совпадает с осью гироскопа. Однако ввиду того, что #, это несовпадение мало, и по-прежнему, несмотря на наличие прецессии, можно считать, что угловая скорость быстрого вращения гироскопа все время совпадает с осью симметрии гироскопа и с моментом импульса.

Величина угловой скорости прецессии может быть легко вычислена. На рис.2 изображен ход прецессии гироскопа в горизонтальной плоскости. Точка О изображает ось прецессии, направленную перпендикулярно плоскости рисунка. Очевидно, что. Отсюда, согласно определению угловой скорости, находим

Согласно формуле (18) введения величина для осесимметричного тела, вращающегося со скоростью вокруг оси симметрии, равна. Здесь - момент инерции тела относительно оси вращения (осевой момент инерции). Тогда из (2) получаем