
- •Общая и биоорганическая химия учебное пособие
- •060101 Лечебное дело, 060103 Педиатрия,
- •060105 Медико-профилактическое дело, 060201 Стоматология.
- •Расчет концентрации растворов
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Показатели pH и pOh. Гидролиз солей. Метод нейтрализации.
- •Интервал перехода окраски некоторых индикаторов.
- •I. Кривая титрования сильной кислоты сильным основанием (и наоборот).
- •II. Кривая титрования слабой кислоты сильным основанием.
- •III. Кривая титрования слабого основания сильной кислотой.
- •IV. Кривая титрования слабого основания слабой кислотой.
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Окислительно-восстановительные реакции. Оксидиметрия
- •Классификация окислительно-восстановительных реакций
- •Направление протекания овр
- •Составление уравнений окислительно-восстановительных реакций
- •Методы оксидиметрии
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Химическая термодинамика
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Химическая кинетика. Химическое равновесие
- •Влияние природы реагирующих веществ
- •Влияние концентрации реагентов.
- •Влияние температуры.
- •Влияние катализатора
- •Химическое равновесие. Принцип Ле – Шателье
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Комплексные соединения. Комплексонометрия
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Теория растворов сильных электролитов
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Гетерогенные реакции в растворах электролитов
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Коллигативные свойства растворов
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Буферные системы. Кислотно-основное состояние
- •Расчет рН буферного раствора
- •Буферная емкость
- •Буферные системы крови
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Строение атома. Периодическая система. Химическая связь
- •Принципы заполнения орбиталей. Полная электронная формула элемента. Периодический закон д.И. Менделеева
- •Химическая связь
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Тестовые задания
- •1) Числом нейтронов 2) массой атома 3) числом нуклонов 4) зарядом ядра
- •Биогенные элементы
- •Классификация биогенных элементов
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Электрохимия Электропроводность растворов электролитов
- •Факторы, влияющие на электропроводность растворов
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Равновесные электродные процессы. Электрохимические цепи
- •Классификация цепей
- •Электродные потенциалы
- •Классификация электродов
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Поверхностные явления. Адсорбция.
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Гидрофобные золи
- •Примеры решения задач:
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Свойства растворов высокомолекулярных соединений
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Спирты и фенолы
- •Методы получения спиртов
- •Методы получения фенола
- •Химические свойства спиртов
- •Химические свойства фенола
- •Пример решения задачи
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Методы получения аминов
- •Химические свойства аминов
- •Химические свойства анилина
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Альдегиды и кетоны
- •Методы получения альдегидов и кетонов
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Углеводы
- •Химические свойства моноз
- •Пример решения задачи
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Карбоновые кислоты и их функциональные производные
- •5. Окислительно-восстановительные реакции карбоновых кислот:
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Аминокислоты. Белки
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Гетероциклы
- •Классификация гетероциклических соединений
- •Пиридин
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Тестовые задания
- •Нуклеиновые кислоты
- •Структура днк.
- •Тестовые задания
- •Рекомендуемая литература Основная:
- •Дополнительная:
- •Расчет концентрации растворов Ответы на задачи для самостоятельного решения
- •Ответы на тестовые задания
- •Показатели pH и pOh. Гидролиз солей.
- •Ответы к тестовым заданиям
- •Окислительно-восстановительные реакции. Оксидиметрия
- •Ответы к тестовым заданиям
- •Химическая термодинамика
- •Ответы к тестовым заданиям
- •Химическая кинетика. Химическое равновесие
- •Ответы к тестовым заданиям
- •Ответы к тестовым заданиям
- •Теория растворов сильных электролитов
- •Ответы к тестовым заданиям
- •Гетерогенные реакции в растворах электролитов
- •Коллигативные свойства растворов
- •Ответы к тестовым заданиям
- •Ответы к тестовым заданиям
- •Поверхностные явления. Адсорбция.
- •Ответы к тестовым заданиям
- •Гидрофобные золи
- •Ответы к тестовым заданиям
Тестовые задания
Выберите один правильный ответ
1. Удельная электрическая проводимость – это:
Мера электропроводящей способности электролита.
Электропроводность слоя электролита, находящегося между электродами, расположенными на расстоянии 1 см друг от друга.
Электропроводность слоя электролита, находящегося между электродами, имеющими площадь 1 см2.
Электропроводность объема раствора, заключенного между двумя параллельными электродами, имеющими площадь по одному квадратному метру и расположенными на расстоянии одного метра друг от друга.
2. Электропроводность обратно пропорциональна:
Силе тока. 3) Напряжению.
Сопротивлению. 4) Мощности.
3. Закон независимого движения ионов в бесконечно разбавленных растворах носит название:
Закон Оствальда.
Закон Кольрауша.
Закон Дебая.
Закон Гесса.
4. Что влияет на молярную электропроводность раствора электролита?
Природа иона.
Концентрация раствора.
Температура раствора.
Все перечисленные факторы.
5. Подвижность какого из ионов будет наибольшей, если не брать во внимание гидратацию ионов:
Na+. 2) Mg2+. 3) Al3+. 4) Для всех одинакова.
6. Почему протоны обладают аномальной подвижностью?
Т.к. имеют малый размер.
Т.к. из-за малого размера сильно поляризованы.
Т.к. могут перемещаться перескоком от одной молекулы воды к другой.
По всем ранее перечисленным причинам.
7. Укажите причину снижения молярной электропроводности при увеличении концентрации в сильных электролитах:
Уменьшение степени диссоциации.
Увеличение сил межионного взаимодействия.
увеличение числа носителей заряда.
Уменьшение сил межионного взаимодействия.
8. Электропроводность какого из растворов при бесконечном разбавлении будет наибольшей:
NaCl. 2) MgCl2. 3) AlCl3. 4) AlPO4.
9. Как называется метод введения ионов в организм человека под действием электрического тока:
Электролиз. 3) Ионофорез.
Электродиффузия. 4) Электрофорез.
10. Выражение для определения молярной электропроводности через удельную имеет вид:
æС. 2) æ/С. 3) С/æ. 4) 2С/æ.
Равновесные электродные процессы. Электрохимические цепи
Электрохимические цепи – системы, состоящие из двух электродов, помещенных в раствор электролита или в два раствора, находящихся в контакте друг с другом. Электрохимические цепи, способные вырабатывать электрическую энергию, называют гальваническими элементами.
Классификация цепей
В химических цепях источником электрической энергии является энергия Гиббса протекающей в системе окислительно-восстановительной («токообразующей») химической реакции. Реакции окисления и восстановления («полуреакции») в гальваническом элементе протекают на разных электродах, т.е. пространственно разделены. Электрод, на котором происходит окисление, называется анодом; электрод, на котором происходит восстановление, - катод. Электроны, образующиеся в процессе окисления на аноде, перемещаются по внешней цепи к катоду, на котором они участвуют в процессе восстановления. Комбинируя различные окислительно-восстановительные полуреакции, можно получить большое число гальванических элементов.
Концентрационные цепи состоят из одинаковых электродов, но отличаются концентрацией веществ, участвующих в окислительно-восстановительных процессах. Концентрационные цепи можно составить из электродов первого и второго рода с разной концентрацией растворов или из газовых электродов с разными давлениями газов.
Электрохимическая цепь называется правильно разомкнутой, если на ее концах находятся одинаковые металлы. На практике это обычно достигается подключением к обоим концам электрохимической цепи проводников из одного и того же металла (например, медных). Разность потенциалов на концах правильно разомкнутой цепи называется электродвижущей силой (ЭДС).
Если гальванический элемент работает обратимо при постоянных температуре и давлении, то его ЭДС однозначно связана с ∆G протекающей в нем химической реакции. В этих условиях уменьшение энергии Гиббса равно полезной работе, которую может совершить гальванический элемент:
∆G = - zF∆E, (1)
где z – число электронов, участвующих в реакции, F – постоянная Фарадея, ∆Е – ЭДС элемента.
Электрохимические цепи являются равновесными только в том случае, если они не содержат границы раздела между разными растворами (т.е. являются цепями без переноса) и, кроме того, если ЭДС цепи скомпенсирована разностью потенциалов от внешнего источника электрического тока. Цепи с переносом не являются полностью равновесными, поскольку на границе раздела двух растворов происходит диффузия катионов и анионов. В результате на границе раздела возникает диффузионный потенциал – дополнительная разность потенциалов, обусловленная разной скоростью переноса катионов и анионов через границу. Диффузионный потенциал вносит неопределенный вклад в ЭДС цепи, точно рассчитать его невозможно, поскольку неизвестны активности отдельных ионов. Для уменьшения диффузионного потенциала между растворами помещают солевой мостик – концентрированный раствор нейтральной соли, подвижность катиона и аниона которой приблизительно одинаковы (КСl, KNO3, NH4NO3). В результате одна граница между двумя растворами заменяется двумя границами: раствор 1 – солевой мостик и солевой мостик – раствор 2. Диффузионные потенциалы на этих границах близки по величине и противоположны по знаку, поэтому их суммарный вклад в ЭДС резко уменьшается, и им можно пренебречь по сравнению с ошибкой эксперимента.
Для гальванического элемента принята следующая форма записи (на примере элемента Даниэля-Якоби):
Zn│ZnSO4
CuSO4│Cu
или Zn│ZnSO4
║
CuSO4│Cu
где
сплошная вертикальная линия│обозначает
границу раздела между разными фазами,
пунктирная вертикальная линия
– границу между разными растворами, а
двойная сплошная вертикальная линия ║
- солевой мостик. Гальванический элемент
принято записывать так, чтобы анод
находился слева.
Электродные реакции (как окислительные, так и восстановительные) обычно записывают как реакции восстановления, поэтому общая реакция в гальваническом элементе записывается как разность между реакциями, протекающими на правом и левом электродах:
Правый электрод: Cu2+ + 2e = Cu.
Левый электрод: Zn2+ + 2e = Zn.
Общая реакция: Сu2+ + Zn = Cu + Zn2+.
ЭДС элемента равна разности потенциалов правого (катода) и левого (анода) электродов:
∆Е = Еп – Ел или же ∆Е = ЕК – ЕА (2)
Если ЭДС элемента положительна, то реакция (так, как она записана в элементе) протекает самопроизвольно, поскольку, согласно уравнению (1), для этой реакции ∆G < 0. Если ЭДС элемента отрицательна, то самопроизвольно протекает обратная реакция.