Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
15. ГЭС России.doc
Скачиваний:
74
Добавлен:
15.02.2015
Размер:
18.09 Mб
Скачать

14. Крупнейшие гидроэлектростанции россии

По состоянию на 2010 год в России существует 14 гидроэлектростанций мощностью более 1000 мегаватт и более сотни крупных гидроэлектростанций.

Гидроэлектростанции России мощностью свыше 1000 мВт

Наименование

Установленная мощность, МВт

География

Саяно-Шушенская ГЭС

6400

р. Енисей, г. Саяногорск

Красноярская ГЭС

6000

р. Енисей, г. Дивногорск

Братская ГЭС

4500

р. Ангара, г. Братск

Усть-Илимская ГЭС

3840

р. Ангара, г. Усть-Илимск

Волгоградская ГЭС

2541

р. Волга, г. Волжский

Жигулёвская ГЭС

2300

р. Волга, г. Жигулевск

Бурейская ГЭС

2010

р. Бурея, в Амурской области

Чебоксарская ГЭС

1370

р. Волга, г. Новочебоксарск

Саратовская ГЭС

1360

р. Волга, г. Балаково

Зейская ГЭС

1330

р. Зея, г. Зея

Нижнекамская ГЭС

1205

р. Кама, г. Набережные Челны

Загорская ГАЭС

1200

р. Кунья, пос. Богородское

Воткинская ГЭС

1020

р. Кама, г. Чайковский

Чиркейская ГЭС

1000

р. Сулак, Дагестан

Крупнейшие гэс в мире

Наименование

Мощность, ГВт

Среднегодовая выработка, млрд кВт·ч

География

Три ущелья

22,40

100,00

р. Янцзы, г. Сандоупин, Китай

Итайпу

14,00

100,00

р. Парана,

г. Фос-ду-Игуасу, Бразилия/Парагвай

Гури

10,30

40,00

р. Карони, Венесуэла

Черчилл-Фолс

5,43

35,00

р. Черчилл, Канада

Тукуруи

8,30

21,00

р. Токантинс, Бразилия

Коротко опишем крупнейшие гидроэлектростанции России.

Крупнейшие гидроэлектростанции России находятся в составе Ангаро-Енисейского каскада ГЭС, построенного на сибирской реке Енисее и его притоке – Ангаре. В этот каскад входят следующие ГЭС:

  • на Енисее – крупнейшая в России Саяно-Шушенская ГЭС и вторая по величине в России Красноярская ГЭС, а также Майнская ГЭС;

  • на Ангаре – Братская и Усть-Илимская ГЭС, входящие в первую пятерку ГЭС России, а также Иркутская ГЭС.

Помимо этого на Ангаре строится Богучанская ГЭС. Она располагается в 367 км ниже по течению от существующей Усть-Илимской ГЭСи в 444 км от устья реки.

Саяно-Шушенская гэс

Саяно-Шушенская гидроэлектростанция имени П. С. Непорожнего – крупнейшая по установленной мощности электростанция России, шестая среди ныне действующих гидроэлектростанций в мире. Расположена на реке Енисей, на границе между Красноярским краем и Хакасией, у посёлка Черёмушки, возле Саяногорска. Строительство Саяно-Шушенской ГЭС, начатое в 1963 году, было официально завершено только в 2000 году.

В 1956-1960 годах «Ленгидроэнергопроектом» была разработана схема гидроэнергетического использования верхнего Енисея, в ходе работы над которой была установлена целесообразность использования падения реки в районе Саянского коридора одной мощной ГЭС, что позволяло создать водохранилище с ёмкостью, достаточной для сезонного регулирования.

В 1962-1965 годах Ленинградский проектный институт «Ленгидропроект» разработал проектное задание для Саяно-Шушенской ГЭС. В ходе проектирования рассматривались варианты компоновки будущего гидроузла с каменно-набросной, бетонной гравитационной, арочной и арочно-гравитационной плотиной.

Из всех возможных вариантов наиболее предпочтительным оказался вариант с арочно-гравитационной плотиной. Например, вариант с каменно-набросной плотиной, потенциально несколько более дешёвый, был отвергнут по причине необходимости строительства крупных тоннельных водосбросов, требовавших сооружения сложных в эксплуатации двухъярусных водоприёмников и создававших тяжёлый гидравлический режим реки в нижнем бьефе.

Проектное задание Саяно-Шушенской ГЭС было утверждено Советом Министров СССР в 1965 году и предусматривало сооружение ГЭС с 12 гидроагрегатами мощностью по 530 МВт с подводом воды по типу использованного на Красноярской ГЭС, расположенными в здании ГЭС, по центру арочно-гравитационной плотины, и двумя поверхностными водосбросами без водобойных колодцев слева и справа от здания ГЭС, предусматривавших гашение энергии потока воды в яме размыва в нижнем бьефе.

В ходе работы над техническим проектом конструктивная схема отдельных элементов гидроузла, зафиксированная в проектном задании, подверглась изменению. В 1968 году по предложению Министерства энергетики СССР и заводов-производителей оборудования было решено увеличить единичную мощность гидроагрегатов до 640 МВт, что позволило уменьшить их количество до 10; кроме того, было принято решение об использовании однониточных трубопроводов и одноподводных спиральных камер, в результате чего удалось существенно уменьшить длину здания ГЭС. Также в связи со значительными прогнозируемыми размерами воронки размыва и возможным развитием ряда неблагоприятных процессов в нижнем бьефе было принято решение об отказе от предусмотренной проектным заданием схемы водосбросных сооружений с гашением потока в воронке размыва в пользу водосброса с водобойным колодцем, расположенного в правой части гидроузла.

11 января 1971 года технический проект Саяно-Шушенской ГЭС был утверждён коллегией Минэнерго СССР.

Подготовительный этап строительства Саяно-Шушенской ГЭС начался в 1963 году со строительства дорог, жилья для строителей и других объектов инфраструктуры. Согласно проектному заданию, строительство ГЭС предполагалось осуществить в 1963-1972 годах.

Непосредственные работы по сооружению собственно ГЭС были начаты 12 сентября 1968 года с отсыпки перемычек котлована первой очереди.

После осушения котлована 17 октября1970 годав основные сооружения станции был уложен первый кубометрбетона. К моменту перекрытия Енисея, осуществлённого11 октября1975 года, были построены основание водосбросной части плотины с донными водосбросами первого яруса, значительная часть водобойного колодца и рисберма. После перекрытия реки были развёрнуты работы по сооружению левобережной части плотины со зданием ГЭС. Вплоть до1979 годасток реки пропускался через 9 донных водосбросов, а также поверх строящейся водосбросной части плотины через так называемую «гребёнку», образованную наращиванием нечётных секций плотины по отношению к чётным.

Первый гидроагрегат Саяно-Шушенской ГЭС (со сменным рабочим колесом) был поставлен под промышленную нагрузку 18 декабря1978 года.

Отставание в темпах строительства ГЭС, в частности, в темпах укладки бетона, привело к чрезвычайному происшествию во время пропуска половодья 1979 года. Предполагалось использовать только водосбросы второго яруса (донные водосбросы первого яруса подлежали заделке). Однако из-за больших объемов паводковых вод возникла необходимость использования также и открытых водосливов, образованных за счёт штраблениянечётных секций водосбросной части плотины. Тем не менее, к началу половодья 1979 года водосбросной участок плотины не был подготовлен к пропуску воды и в этом варианте – в необходимые для безопасного пропуска половодья сооружения не было уложено более 100 000 м³ бетона. В результате23 мая1979 года при пропуске половодья произошёл перелив воды через раздельную стенку и затопление котлована ГЭС с введённым уже в строй гидроагрегатом № 1. Перед затоплением гидроагрегат был остановлен и частично демонтирован, что позволило после откачки воды восстановить его работоспособность. Но все же понадобилось время для восстановления гидроагрегата – откачка воды из здания ГЭС, осушка, ремонтно-восстановительные работы. В ходе восстановительных работ был сооружён бетонный барьер вокруг гидрогенератора, произведена герметизация ограждающих конструкций. Повторно гидроагрегат № 1 был включен в сеть20 сентября1979 года.

Ввод гидроагрегата № 2 (также со сменным рабочим колесом) был произведён 5 ноября1979 года, гидроагрегата № 3 со штатным рабочим колесом –21 декабря1979 года.

К этому времени начали возникать проблемы со строительными конструкциями плотины ГЭС. При заполнении водохранилища возникли трещины в бетоне плотины. Имели место значительные по объёму кавитационныеразрушения в водосбросах второго яруса и попусковом водосбросе первого яруса. Это было связано как с недостаточно продуманными проектными решениями, так и с отступлениями от проекта при строительстве и эксплуатации водосбросов. В частности, согласно проекту временные водосбросы второго яруса планировалось использовать в течение 2-3 лет, однако из-за затягивания строительства фактически они использовались 6 лет.

В 1980 году были пущены гидроагрегаты № 4 и № 5 (29 октябряи21 декабря),6 ноября1981 года– гидроагрегат № 6. Оставшиеся гидроагрегаты были пущены в1984 году(№ 7 –15 сентябряи № 8 –11 октября) и в1985 году(№ 9 –21 декабря, № 10 –25 декабря). К началу половодья 1985 года были заделаны водосбросы второго яруса и введена в работу часть эксплуатационных водосбросов. В1987 годувременные рабочие колёса гидроагрегатов № 1 и № 2 были заменены на постоянные. К1988 годустроительство ГЭС было в основном завершено, в1990 годуводохранилище было впервые заполнено до отметки НПУ. В постоянную эксплуатацию Саяно-Шушенская ГЭС была принята13 декабря2000 года.

И в процессе строительства Саяно-Шушенской ГЭС, и в процессе ее эксплуатации возникали проблемы, как со строительной (бетонной) частью станции, так и с оборудованием гидроагрегатов.

Проблемы с водобойными колодцами.

Первые, небольшие и относительно легко устранённые повреждения водобойного колодца Саяно-Шушенской ГЭС были зафиксированы в 1980-1981 годах. Разрушения были вызваны попаданием в водобойный колодец горной породы, кусков бетона и строительного мусора, нарушениями в технологии строительства, непроектными режимами работы водосбросов.

Более серьезные проблемы возникли при пропускании через водосбросы паводковых вод в штатном режиме. Конструкция и качество строительства водобойных колодцев оказались не способными работать в штатном режиме.

Так в 1985 году перед пропуском половодья водобойный колодец был осушен, обследован и очищен, значительных повреждений в нём обнаружено не было. После пропуска половодья, в ноябре 1988 года при осмотре водобойного колодца было выявлено наличие в нём значительных разрушений. На площади около 70 % поверхности дна колодца плиты крепления были полностью разрушены и выброшены потоком за водобойную стенку. На площади, составляющей порядка 25 % от общей площади дна колодца, были разрушены все плиты крепления, бетонная подготовка и скала на глубину от 1 до 6 м ниже основания плит.

Причины разрушения изучались различными комиссиями, объединяя выводы которых, можно отметить следующее.

Плиты, покрывавшие дно водобоя, были плохо закреплены. Между ними оставались незагерметизированные трещины, в которые проникала вода. При починке кавитационных повреждений водобойного колодца в 1981 году бетонная пломба была выполнена из некачественного бетона, места ее сопряжения с плитами крепления не были загерметизированы. Кроме того, при открытии затворов водосброса были использованы непроектные схемы сосредоточенного сброса воды в водобойный колодец.

При ремонте водобойного колодца вместо плит толщиной 2,5 м были уложены блоки толщиной 4 – 8 м. Устойчивость блоков обеспечивалась за счёт их веса, цементации основания и использования анкеров. При этом разборка старого крепления и подготовка основания для нового проводилась с широким использованием буровзрывных работ.

В 1987 годуэксплуатационные водосбросы не использовались. В1988 годудля пропуска летнего паводка с15 июляпо19 августаоткрывалось до пяти эксплуатационных водосбросов, максимальный расход достигал 5450 м³/с. После осушения колодца в сентябре 1988 года были обнаружены значительные разрушения его днища в центральной части. Общая площадь повреждений составила 2250 м², что соответствует примерно 14 % общей площади дна колодца. В зоне наибольших разрушений площадью 890 м² бетонное крепление было разрушено полностью, до скального грунта, с образованием в последнем воронки размыва. Бетонные блоки крепления весом до 700 тонн каждый были либо разрушены, либо отброшены потоком к водобойной стенке.

Причиной разрушения водобойного колодца являлось образование трещин в блоках первой очереди реконструкции в ходе подготовки основания под блоки второй очереди с применением широкомасштабных буровзрывных работ. Проникновение воды под давлением в трещины через открытые швы между блоками привело к разрушению повреждённых блоков первой очереди, что в свою очередь привело к отрыву от основания неповреждённых блоков второй очереди, часть из которых (толщиной 6 м и более) к тому же не была закреплена анкерами. Усугубило ситуацию включение водосбросов 43 и 44 секций с полным открытием затворов 1 августа1988 года, что привело к концентрации сбросов на «потревоженной», но ещё находившейся на месте части крепления, после чего в короткие сроки произошло разрушение крепления.

Разрушения в водобойном колодце после паводка 1988 года устранялись путём установки блоков, аналогичных блокам первой и второй очереди, но с герметизацией швов металлическими шпонкамии обязательной установкой анкеров. Кроме того, во всех сохранившихся блоках крепления второй очереди толщиной 6 метров и более также устанавливались анкера из расчёта один анкер на 4 м² площади. Была проведена цементация швов блоков всех трёх очередей. Взрывные работы при подготовке основания для установки блоков были исключены. Работы по реконструкции водобойного колодца были завершены к 1991 году, всего было уложено 10 630 м³ бетона, установлено 221 т пассивных анкеров и сеток и 46,7 т (300 шт.) предварительно-напряжённых анкеров. После завершения реконструкции, в ходе дальнейшей эксплуатации значительных разрушений в водобойном колодце не наблюдалось.

После выявления повторных разрушений в водобойном колодце в 1988 году было предложено, с целью снижения нагрузок на водобойный колодец, рассмотреть возможность сооружения дополнительного водосброса тоннельного типа пропускной способностью 4000-5000 м³/с.

Строительство берегового водосброса было начато 18 марта 2005 года. Строительные работы по сооружению первой очереди берегового водосброса, включающей входной оголовок, правый безнапорный туннель, пятиступенчатый перепад и отводящий канал, были завершены к 1 июня2010 года. Гидравлические испытания первой очереди были проведены в течение трёх дней, начиная с28 сентября2010 года. Завершение строительства берегового водосброса намечено на2011 год.

Повышенный уровень фильтрации через напорный фронт.

После наполнения водохранилища до отметки НПУ в 1990 году резко увеличился фильтрационный расход через тело плотины и зону контакта плотины и основания. Проект допускал уровень фильтрации в основании в пределах 100 – 150 л/с, а в теле плотины фильтрация вообще должна была быть незначительной. Тем не менее, в 1995 году была зафиксирована фильтрация в количестве 549 л/с в основании и 457 л/с в теле плотины. Причиной увеличения фильтрации явилось образование трещин в плотине, трещинообразование в месте контакта бетона плотины и её основания, а также разуплотнение пород основания. В качестве причин данного явления называются несовершенство использованных при проектировании расчётных методик и отступления от проекта при строительстве плотины (интенсификация строительства первого столба плотины при отставании в бетонировании других столбов).

В 1991-1994 годах предпринимались попытки заделки трещин в плотине и основании с помощью цементации, которые не привели к успеху – цементирующий состав вымывался из трещин. В 1993 годубыло принято решение воспользоваться услугамифранцузскойфирмы «Solétanche Bachy» («Солетанш Баши»), имевшей опыт ремонтных работ на гидротехнических сооружениях с использованиемэпоксидных смол. Работы по инъецированию трещин в бетоне плотины с помощью эпоксидного состава «Родур-624» были проведены в 1996-1997 годах и показали хороший результат – фильтрация была подавлена до 5 л/с и менее. Опираясь на этот опыт, в1998-2002 годахуже с помощью отечественного состава КДС-173 (компаунд эпоксидной смолы и модифицированногокаучука) были проведены работы по инъецированию трещин в основании плотины, также с положительным результатом – фильтрация снизилась в несколько раз, упав до значений меньших, чем предусмотрено проектом. Всего на ремонтные работы в плотине и основании было затрачено 334 тонны эпоксидных составов.

С 1997 года, после завершения заделки трещин в плотине, с целью недопущения их раскрытия было принято решение снизить отметку нормального подпорного уровня на 1 метр (с 540 до 539 м), а отметку форсированного подпорного уровня – на 4,5 м (с 544,5 м до 540 м). В 2006 году при прохождении сильного летнего дождевого паводка холостые сбросы через эксплуатационный водосброс достигали 5270 м³/с, существенных повреждений в водобойном колодце после его осушения обнаружено не было. Значительные объёмы сбросов через эксплуатационный водосброс (до 4906 м³/с) имели место и в 2010 году, при пропуске многоводного паводка обеспеченностью 3-5 %. После аварии в августе 2009 года эксплуатационный водосброс работал в течение более чем 13 месяцев, с 17 августа2009 года по29 сентября2010 года, пропустив 55,6 км³ воды без каких-либо повреждений.

В настоящее время действующая Саяно-Шушенская ГЭС имеет следующие характеристики.

Высота плотины составляет 245 м, ширина основания 110 м, а длина по гребню 1066 м.

Состав сооружений ГЭС:

  • бетонная арочно-гравитационная плотина высотой 245 м, длиной 1066 м, шириной в основании – 110 м, шириной по гребню 25 м. Плотина включает левобережную глухую часть длиной 246,1 м, станционную часть длиной 331,8 м, водосливную часть длиной 189,6 м и правобережную глухую часть длиной 298,5 м;

  • приплотинное здание ГЭС;

  • береговой водосброс.

 Мощность ГЭС – 6400 МВт, среднегодовая выработка 23,5 млрд. кВт·ч. В 2006 году из-за крупного летнего паводка электростанция выработала 26,8 млрд. кВт·ч электроэнергии.

 В здании ГЭС размещено 10 радиально-осевых гидроагрегатов мощностью по 640 МВт, работающих при расчетном напоре 194 м. Максимальный статический напор на плотину – 220 м.

Ниже Саяно-Шушенской ГЭС расположен её контррегулятор — Майнская ГЭС мощностью 321 МВт, организационно входящая в состав Саяно-Шушенской ГЭС.

Плотина ГЭС образует крупное Саяно-Шушенское водохранилище полным объёмом 31,34 куб. км (полезный объём – 15,34 куб. км) и площадью 621 кв. км.

Перекрытие Енисея

Перекрытие Енисея

Рабочие колеса турбин на баржах доставляют к месту

строительства станции

Саяно-Шушенская ГЭС – ночная иллюминация

Саяно-Шушенская ГЭС – вид на плотину

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.