
- •Рязань 2012
- •Введение
- •Глава 1. Предел функции
- •1.1. Определение предела
- •1.2. Операции над пределами
- •1.3. Замечательные пределы
- •1.4. Примеры
- •1.5. Варианты заданий
- •1.6. Контрольные вопросы Глава 2. Производная и дифференциал
- •2.1 Понятие производной
- •2.2. Геометрический и физический смысл производной
- •2.3. Таблица производных
- •2.4. Основные правила дифференцирования
- •2.5. Производные высших порядков
- •2.6. Дифференциал функции
- •2.7. Геометрический смысл и свойства дифференциала
- •2.8. Дифференциалы высших порядков
- •2.9. Примеры
- •2.10. Варианты заданий
- •2.11. Контрольные вопросы
- •Глава 3. Исследование функций и построение графиков
- •3.1. Промежутки монотонности и знакопостоянства
- •3.2. Экстремумы функции
- •3.3. Выпуклость и вогнутость функции. Точка перегиба
- •3.4. Асимптоты
- •3.5.Общая схема исследования функции и построение графиков
- •3.6. Примеры
- •3.7. Варианты заданий
- •3.8. Контрольные вопросы
- •Глава 4. Функции нескольких переменных
- •4.1. Определение функции нескольких переменных
- •4.2. Частные производные
- •4.3. Полный дифференциал
- •4.5. Примеры
- •4.6. Варианты заданий
- •4.7. Контрольные вопросы Глава 5. Численное дифференцирование
- •5.1. Формулы для вычисления первой производной
- •5.2. Формулы второй производной
- •5.3. Примеры
- •5.4. Варианты заданий
- •5.5. Контрольные вопросы Глава 6 Основы интерполяции.
- •6.1. Постановка задачи
- •Интерполяционные формулы конечных разностей
- •6.3. Интерполяционные формулы центральных разностей
- •6.4. Интерполирование функции с не равноотстоящими узлами
- •6.5. Варианты заданий
- •6.6. Контрольные вопросы Глава 7. Неопределенный интеграл
- •7.1. Первообразная функция и неопределенный интеграл
- •7.2. Основные свойства неопределенного интеграла
- •7.3. Таблица простейших интегралов
- •7.4. Основные методы интегрирования
- •7.4.1. Непосредственное интегрирование
- •7.4.2. Метод подстановки (замена переменной)
- •7.4.3. Интегрирование по частям
- •7.5. Примеры
- •7.6. Варианты заданий
- •7.7. Контрольные вопросы
- •Глава 8. Определенный интеграл
- •8.1. Основные понятия и свойства определенного интеграла
- •Свойства определенного интеграла
- •8.2. Основные методы интегрирования
- •8.2.1. Формула Ньютона-Лейбница
- •8.2.2. Метод подстановки
- •8.2.3. Интегрирование по частям
- •8.3. Примеры
- •8.4. Варианты заданий
- •8.5. Биологические, физические и медицинские приложения определенного интеграла
- •8.5.1. Примеры задач прикладного характера.
- •8.5.2. Примеры решения задач.
- •8.5.3. Варианты заданий
- •Глава 9. Численное интегрирование
- •9.1. Формула прямоугольников
- •9.2. Формула трапеций
- •9.3. Метод средних
- •9.4. Формула Симпсона
- •9.5. Примеры
- •9.6. Варианты заданий
- •9.7. Контрольные вопросы
- •Глава 10. Дифференциальные уравнения
- •Основные определения
- •10.2. Уравнения с разделяющимися переменными
- •10.3. Однородные уравнения первого порядка
- •10.4. Линейные уравнения первого порядка
- •9.5. Примеры
- •I. Метод Лагранжа
- •II. Метод Бернулли
- •1) Метод вариации произвольной постоянной
- •2) Метод подстановки
- •10.6. Варианты заданий
- •10.7. Применение дифференциальных уравнений в биологии и медицине.
- •10.8. Варианты заданий
- •10.9. Контрольные вопросы
- •Глава 11. Численные методы решения дифференциальных уравнений
- •11.1. Метод Эйлера
- •10.2. Метод Рунге – Кутта
- •10.3. Примеры
- •11.4. Варианты заданий
- •11.4. Контрольные вопросы
- •Глава 12. Элементы теории вероятностей
- •12.1. Случайное событие
- •12.2. Комбинаторика
- •12.3. Вероятность случайного события
- •Закон сложения вероятностей
- •12.5. Варианты заданий
- •12.6. Условная вероятность, закон умножения вероятностей
- •12.7. Варианты заданий
- •12.8. Формулы полной вероятности и Байеса
- •12.9. Варианты заданий
- •11.10. Формулы Бернулли, Пуассона и Муавра-Лапласа
- •12.11. Варианты заданий
- •12.2. Случайные величины
- •12.2.1. Закон распределения случайной величины
- •12.2.2. Функция распределения случайных величин
- •12.2.3. Числовые характеристики дискретной случайной величины
- •12.2.4. Плотность вероятности непрерывных случайных величин
- •12.2.5. Нормальный закон распределения
- •12.3. Варианты заданий
- •Глава 13. Статистический анализ результатов исследований
- •13.1. Основные понятия математической статистики
- •13.1. Варианты заданий
- •13.2. Статистические оценки параметров распределения. Выборочные характеристики
- •13.2.1. Характеристики положения
- •13.2.2. Характеристики рассеяния вариант вокруг своего среднего
- •13.3. Варианты заданий
- •13.4. Оценка параметров генеральной совокупности по ее выборке
- •13.4.1. Точечная оценка параметров генеральной совокупности
- •13.5. Варианты заданий
- •13.6. Интервальная оценка параметров генеральной совокупности
- •13.7. Варианты заданий
- •1.8. Контрольные вопросы
- •Глава 14. Корреляционный и регрессионный анализ
- •14.1. Функциональная и корреляционная зависимости
- •14.2. Коэффициент линейной корреляции и его свойства
- •14.3. Проверка гипотезы о значимости выборочного коэффициента линейной корреляции
- •14.4. Выборочное уравнение линейной регрессии. Метод наименьших квадратов
- •14.5. Нелинейная регрессия
- •14.6. Варианты заданий
- •Приложение
- •Критические значения выборочного коэффициента корреляции
- •Критерий Колмогорова – Смирнова Точные и асимптотические границы для верхней грани модуля разности истинной и эмпирической функции распределения
- •Распределение Пирсона (х2 – распределение)
- •Распределение Фишера – Снедекора (f-распределение)
- •Библиографический список
- •Содержание
- •Глава 13. Статистический анализ результатов исследований 150
- •Глава 14. Корреляционный и регрессионный анализ 168
Свойства определенного интеграла
Определенный интеграл не зависит от обозначения переменной интегрирования, т.е.
Определенный интеграл от суммы конечного числа непрерывных функций f1(x), f2(x), …, fn(x), заданных на отрезке [a; b], равен сумме определенных интегралов от этих функций:
Постоянный множитель можно выносить за знак определенного интеграла:
, где a < c < b.
Если f(x)0 на отрезке [a; b], то
; если f(x)0 на отрезке [a; b], то
.
Если m, M – соответственно наименьшее и наибольшее значения функции f(x) на отрезке [a; b]: mf(x)M, то
.
Если f(x) g(x) на отрезке [a; b], то
.
Определенный интеграл от непрерывной функции равен произведению значения этой функции в некоторой промежуточной точке х=с отрезка интегрирования [a; b] на длину этого отрезка (теорема о среднем):
или
.
.
.
8.2. Основные методы интегрирования
8.2.1. Формула Ньютона-Лейбница
Для вычисления определенного интеграла от непрерывной на отрезке [a;b] функции f(x) в том случае, когда может быть найдена ее первообразная F(x) служит формула Ньютона-Лейбница:
,
т.е. определенный интеграл равен разности значений любой первообразной при верхнем и нижнем пределах интегрирования.
При интегрировании четных и нечетных функций в симметричных пределах интегрирования используют формулу
Пример. Вычислить определенные интегралы.
1).
2)
8.2.2. Метод подстановки
При вычислении определенного интеграла методом замены переменной (метод подстановки) данный интеграл преобразуется с помощью подстановки t=(x) или x=(t) в определенный интеграл относительно новой переменной интегрирования t. При этом старые пределы интегрирования a, b заменяются новыми переделами интегрирования и соответственно, которые находятся из исходной подстановки.
Из первой подстановки новые пределы интегрирования вычисляются непосредственно: =(a), =(b). Из второй подстановки новые пределы интегрирования находятся путем решения уравнений ()=a, ()=b относительно и .
Таким образом, имеем
Здесь предполагается, что функции (t) и ΄(t) непрерывны на отрезке [; ], а функция f((t)) определена и непрерывна на отрезке t .
Пример.
Вычислим методом подстановки интеграл
.
Решение. Введем новую переменную интегрирования с помощью подстановки t=2x–1. Дифференцируя, получим dt=2dx, откуда dx=dt/2. Находим новые пределы интегрирования: подставляем в соотношение t=2x–1 значения x=2, х=3. Тогда получим α=3, β=5. Следовательно,
.
В дальнейшем при решении методом подстановки будем использовать форму записи как в неопределенном интеграле, используя вертикальные скобки.
8.2.3. Интегрирование по частям
Если функции
u=u(x)
и v=v(x)
имеют непрерывные производные на
отрезке [a;
b],
то для вычисления определенного
интеграла используют формулу
,
которая называетсяформулой
интегрирования по частям для определенного
интеграла.
Пример.
Вычислить интеграл
.
Решение.
Положим
Тогда
По формуле интегрирования по частям
имеем
.