
- •Рязань 2012
- •Введение
- •Глава 1. Предел функции
- •1.1. Определение предела
- •1.2. Операции над пределами
- •1.3. Замечательные пределы
- •1.4. Примеры
- •1.5. Варианты заданий
- •1.6. Контрольные вопросы Глава 2. Производная и дифференциал
- •2.1 Понятие производной
- •2.2. Геометрический и физический смысл производной
- •2.3. Таблица производных
- •2.4. Основные правила дифференцирования
- •2.5. Производные высших порядков
- •2.6. Дифференциал функции
- •2.7. Геометрический смысл и свойства дифференциала
- •2.8. Дифференциалы высших порядков
- •2.9. Примеры
- •2.10. Варианты заданий
- •2.11. Контрольные вопросы
- •Глава 3. Исследование функций и построение графиков
- •3.1. Промежутки монотонности и знакопостоянства
- •3.2. Экстремумы функции
- •3.3. Выпуклость и вогнутость функции. Точка перегиба
- •3.4. Асимптоты
- •3.5.Общая схема исследования функции и построение графиков
- •3.6. Примеры
- •3.7. Варианты заданий
- •3.8. Контрольные вопросы
- •Глава 4. Функции нескольких переменных
- •4.1. Определение функции нескольких переменных
- •4.2. Частные производные
- •4.3. Полный дифференциал
- •4.5. Примеры
- •4.6. Варианты заданий
- •4.7. Контрольные вопросы Глава 5. Численное дифференцирование
- •5.1. Формулы для вычисления первой производной
- •5.2. Формулы второй производной
- •5.3. Примеры
- •5.4. Варианты заданий
- •5.5. Контрольные вопросы Глава 6 Основы интерполяции.
- •6.1. Постановка задачи
- •Интерполяционные формулы конечных разностей
- •6.3. Интерполяционные формулы центральных разностей
- •6.4. Интерполирование функции с не равноотстоящими узлами
- •6.5. Варианты заданий
- •6.6. Контрольные вопросы Глава 7. Неопределенный интеграл
- •7.1. Первообразная функция и неопределенный интеграл
- •7.2. Основные свойства неопределенного интеграла
- •7.3. Таблица простейших интегралов
- •7.4. Основные методы интегрирования
- •7.4.1. Непосредственное интегрирование
- •7.4.2. Метод подстановки (замена переменной)
- •7.4.3. Интегрирование по частям
- •7.5. Примеры
- •7.6. Варианты заданий
- •7.7. Контрольные вопросы
- •Глава 8. Определенный интеграл
- •8.1. Основные понятия и свойства определенного интеграла
- •Свойства определенного интеграла
- •8.2. Основные методы интегрирования
- •8.2.1. Формула Ньютона-Лейбница
- •8.2.2. Метод подстановки
- •8.2.3. Интегрирование по частям
- •8.3. Примеры
- •8.4. Варианты заданий
- •8.5. Биологические, физические и медицинские приложения определенного интеграла
- •8.5.1. Примеры задач прикладного характера.
- •8.5.2. Примеры решения задач.
- •8.5.3. Варианты заданий
- •Глава 9. Численное интегрирование
- •9.1. Формула прямоугольников
- •9.2. Формула трапеций
- •9.3. Метод средних
- •9.4. Формула Симпсона
- •9.5. Примеры
- •9.6. Варианты заданий
- •9.7. Контрольные вопросы
- •Глава 10. Дифференциальные уравнения
- •Основные определения
- •10.2. Уравнения с разделяющимися переменными
- •10.3. Однородные уравнения первого порядка
- •10.4. Линейные уравнения первого порядка
- •9.5. Примеры
- •I. Метод Лагранжа
- •II. Метод Бернулли
- •1) Метод вариации произвольной постоянной
- •2) Метод подстановки
- •10.6. Варианты заданий
- •10.7. Применение дифференциальных уравнений в биологии и медицине.
- •10.8. Варианты заданий
- •10.9. Контрольные вопросы
- •Глава 11. Численные методы решения дифференциальных уравнений
- •11.1. Метод Эйлера
- •10.2. Метод Рунге – Кутта
- •10.3. Примеры
- •11.4. Варианты заданий
- •11.4. Контрольные вопросы
- •Глава 12. Элементы теории вероятностей
- •12.1. Случайное событие
- •12.2. Комбинаторика
- •12.3. Вероятность случайного события
- •Закон сложения вероятностей
- •12.5. Варианты заданий
- •12.6. Условная вероятность, закон умножения вероятностей
- •12.7. Варианты заданий
- •12.8. Формулы полной вероятности и Байеса
- •12.9. Варианты заданий
- •11.10. Формулы Бернулли, Пуассона и Муавра-Лапласа
- •12.11. Варианты заданий
- •12.2. Случайные величины
- •12.2.1. Закон распределения случайной величины
- •12.2.2. Функция распределения случайных величин
- •12.2.3. Числовые характеристики дискретной случайной величины
- •12.2.4. Плотность вероятности непрерывных случайных величин
- •12.2.5. Нормальный закон распределения
- •12.3. Варианты заданий
- •Глава 13. Статистический анализ результатов исследований
- •13.1. Основные понятия математической статистики
- •13.1. Варианты заданий
- •13.2. Статистические оценки параметров распределения. Выборочные характеристики
- •13.2.1. Характеристики положения
- •13.2.2. Характеристики рассеяния вариант вокруг своего среднего
- •13.3. Варианты заданий
- •13.4. Оценка параметров генеральной совокупности по ее выборке
- •13.4.1. Точечная оценка параметров генеральной совокупности
- •13.5. Варианты заданий
- •13.6. Интервальная оценка параметров генеральной совокупности
- •13.7. Варианты заданий
- •1.8. Контрольные вопросы
- •Глава 14. Корреляционный и регрессионный анализ
- •14.1. Функциональная и корреляционная зависимости
- •14.2. Коэффициент линейной корреляции и его свойства
- •14.3. Проверка гипотезы о значимости выборочного коэффициента линейной корреляции
- •14.4. Выборочное уравнение линейной регрессии. Метод наименьших квадратов
- •14.5. Нелинейная регрессия
- •14.6. Варианты заданий
- •Приложение
- •Критические значения выборочного коэффициента корреляции
- •Критерий Колмогорова – Смирнова Точные и асимптотические границы для верхней грани модуля разности истинной и эмпирической функции распределения
- •Распределение Пирсона (х2 – распределение)
- •Распределение Фишера – Снедекора (f-распределение)
- •Библиографический список
- •Содержание
- •Глава 13. Статистический анализ результатов исследований 150
- •Глава 14. Корреляционный и регрессионный анализ 168
6.5. Варианты заданий
6.1. Найти значение функции, используя формулу Лагранжа по данным таблицы
Таблица 1
х |
у |
|
Вариант № |
х |
0,43 0,48 0,55 0,62 0,70 0,75 |
1,63597 1,73234 1,87686 2,03345 2,22846 2,35973 |
|
1 7 13 19 25 |
0,702 0,512 0,645 0,736 0,608 |
Таблица 2
х |
y |
|
Вариант № |
х |
0,02 0,08 0,12 0,17 0,23 0,30 |
1,02316 1,09590 1,14725 1,21483 1,30120 1,40976 |
|
2 8 14 20 26 |
0,102 0,114 0,125 0,203 0,154 |
6.2. Найти значения функции, используя полиномы Ньютона для начала и конца интервала интерполяции.
Таблица 3
х |
у |
|
Вариант № |
х |
1,375 1,380 1,385 1,390 1,395 1,400 |
5,04192 5,17744 5,32016 5,47069 5,62968 5,79788 |
|
1 7 12 19 25 |
1,3832 1,3926 1,3862 1,3934 1,3866 |
Таблица 4
х |
у |
|
Вариант № |
х |
0,115 0,120 0,125 0,130 0,135 0,140 |
8,65729 8,29329 7,95829 7,64893 7,36235 7,09613 |
|
2 8 14 20 26 |
0,1264 0,1315 0,1232 0,1334 0,1285 |
Таблица 5
х |
y |
|
Вариант № |
х |
0,150 0,155 0,160 0,165 0,170 0,175 |
6,61659 6,39989 6,19658 6,00551 5,82558 5,65583 |
|
3 9 15 21 27 |
0,1521 0,1611 0,1662 0,1542 0,1625 |
6.6. Контрольные вопросы Глава 7. Неопределенный интеграл
7.1. Первообразная функция и неопределенный интеграл
Пусть функция f(x) определена на некотором (конечном или бесконечном) интервале (а; b). Функция F(x) называется первообразной для функции f(x) на интервале (а; b), если в любой точке этого промежутка ее производная равна f(x), т. е.
для
всех
или
dF(x)=
f(x)dx.
функция 3x2 есть производная от x3, т. е. 3x2dx есть дифференциал функции x3:
3x2 dx = d(x3).
Тогда, по определению функция x3 является первообразной для функции 3x2. Кроме того, выражение 3x2dx есть дифференциал функции x3+7: 3x2dx = d(x3+7).
Следовательно, функция x3+7 (как и функция x3) – первообразная для функции 3x2.
Если F(x) есть одна из первообразных для функции f(x), то всякая другая представляется выражением F(x)+C, где C – произвольная постоянная величина.
Таким образом, любая непрерывная функция f(x) имеет бесчисленное множество первообразных.
Неопределенным интегралом от функции f(x) (или от выражения f(x)dx) называется совокупность всех ее первообразных.
Обозначение:
.
Здесь
знак
называетсяинтегралом,
функция f(x)
– подынтегральной функцией,
f(x)dx
– подынтегральным выражением,
х
– переменной
интегрирования.
Операция нахождения неопределенного интеграла от данной функции называется интегрированием этой функции.
Интегрирование – операция, обратная операции дифференцирования (нахождения производной от функции). Всякая непрерывная на данном интервале функция имеет неопределенный интеграл.