
- •§ 1 Основные понятия об управлении, автоматизации управления и регулировании. Системы автоматического управления (сау) и системы автоматического регулирования (сар). Задачи автоматизации
- •1.2 Классификация сар
- •По виду задающего воздействия g(t) замкнутые сар делятся на:
- •§2 Математический аппарат исследования линейных систем автоматического регулирования
- •§ 3 Передаточные функции линейных звеньев
- •§ 4. Алгебра передаточных функций (пф). Основные соединения линейных звеньев.
- •§5. Алгебра пф . Многоконтурная линейная одномерная сау
- •§ 6. Передаточные функции линейных систем
- •§7 Временные характеристики линейных звеньев
- •§8 Частотные характеристики линейных систем
- •§ 8.1. Экспериментальный и аналитический методы получения частотных характеристик
- •§8.2.Логарифмические частотные характеристики.
- •§9 Типовые звенья линейных систем и их динамические характеристики
- •§9.1 Позиционные звенья
- •5. Консервативное звено
- •§9.2 Интегрирующие звенья
- •2. Инерционное интегрирующее звено
- •3. Изодромное звено
- •§ 9.3 Дифференцирующие звенья
- •1. Идеальное дифференцирующее звено
- •2. Инерционное дифференцирующее звено
- •§ 9.4 Звено запаздывания
- •§10. Типовые объекты регулирования и их свойства.
- •10.1. Одноёмкостный объект с самовыравниванием
- •§ 10.2 Одноемкостный объект без самовыравнивания.
- •§10.3 Многоемкостные объекты с самовыравниванием
- •§10.4 Многоемкостные объекты без самовыравнивания.
- •§10.5 Объекты регулирования с запаздыванием
- •§11. Законы регулирования и регуляторы
- •§ 11.1 Пропорциональный регулятор
- •§11.2 Интегральный регулятор
- •§ 11.3 Пи-регулятор
- •§11.4 Пропорционально-дифференциальный (пд-регулятор)
- •§ 11.5 Пропорционально-интегрально-дифференциальный (пид) регулятор
§11.2 Интегральный регулятор
Регулятор, реализующий И-закон регулирования называется интегральным (И-регулятор). У И-регулятора изменение выходной величины (перемещение регулирующего органа) пропорционально интегралу от отклонения регулируемой величины. Уравнение динамики И-регулятора имеет вид:
u(t)=
или
,
где
-
постоянная времени интегрирования,
являющаяся настроечным параметром
И-регулятора.
Из
уравнения динамики следует, что скорость
перемещения регулирующего органа
пропорциональна величине рассогласования
ε(t).
Регулирующий орган будет перемещаться
до тех пор, пока рассогласование (ошибка
регулирования) не станет равным нулю:
(илиu=const)
при ε(t)=0.
Для
И-регулятора характерно то, что при
постоянно действующем возмущении он
возвращает регулируемую величину к
заданному значению, а следовательно
устраняет ошибку системы:
=0.
В
динамическом отношении И-регулятор
представляет собой идеальное интегрирующее
звено с передаточной функцией
Рассмотрим реализацию И-закона на примере одноёмкостного объекта с самовыравниванием (рисунок 11.3).
Рисунок 11.3 Пример реализации И-закона
В
случае равенства
уровень Н = Н(0), а поплавок П и задвижка
З1 неподвижны. Движок потенциометрического
датчика
находится посередине, напряжение
питания якоря равно нулю. При уменьшении
расхода жидкости на величину
уровень жидкости в баке начнет расти,
поплавок поднимется и перемещает вверх
движок датчика. В цепи якоря ДПТ появляется
напряжениеU.
Двигатель несколько закрывает задвижку
З1 и приток жидкости Q1
уменьшается. В момент t1
величины Q1
и Q2
сравнялись (рисунок 11.3 б). Но так как
уровень воды превышает заданный H(0),
т.е.
,
интеграл от рассогласования будет
возрастать и следовательно регулирующее
воздействиеu(t)
будет продолжать изменяться. В результате
приток Q1
дополнительно уменьшится и станет
меньше расхода Q2,
поэтому уровень в баке начнет уменьшаться,
что в свою очередь вызовет уменьшение
расхода вытекающей жидкости Q2(t).
В момент
приток
и расход жидкости сравняются и уровень
достигнет заданного значенияH(0)
(рисунок 11.3 в).
Процесс регулирования при И-законе прекратится, если одновременно будут выполнены 2 условия:
- уровень равен заданному H=H(0);
-приток жидкости равен расходу Q1=Q2.
Первое
условие необходимо для того, чтобы
регулирующее воздействие перестало
изменяться. При выполнении второго
условия в объекте достигается равновесие
и уровень H
постоянен. Эти условия выполняются,
начиная с времени
,
которое определяет время регулирования.
Сравнительный анализ П и И регуляторов
И-регулятор
при постоянно действующем возмущении
возвращает регулируемую величину к
заданному значению, то есть устраняется
ошибка регулирования
=0.(преимущество
И-закона).
Однако при П-законе САР в переходном режиме будет иметь лучшие показатели качества, чем при И-законе регулирования (преимущество П-закона).
Рисунок 11.4 – Сравнение переходных характеристик П- и И-регуляторов.
В начальный момент времени П-регулятор сразу создает мощное регулирующее воздействие на объект. При И-законе, в начальный момент времени оно мало. Только спустя некоторое время воздействие И-регулятора достигает того же значения, что и при П-законе (рисунок 11.4).
Медленная реакция И-регулятора в начальный момент не позволяет достаточно эффективно компенсировать влияние возмущения на объект, поэтому в объекте при И- законе возникают более значительные динамические отклонения регулируемой величины, а сам процесс регулирования длится дольше.
Таким образом, П-регулирование обеспечивает хорошее свойство САР в переходном процессе, а И-регулирование позволяет полностью устранить ошибку регулирования.