Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
346
Добавлен:
12.02.2015
Размер:
3.19 Mб
Скачать

Косая плоскость

Косой плоскостью называется поверхность, образованная движением прямой линии, скользящей по двум скрещивающимся прямым и остающейся во всех своих положениях параллельной некоторой плоскости параллелизма.

Косая плоскость, направляющими которой являются скрещивающиеся прямые m(m1,m2) и n(n1,n2), а плоскостью параллелизма - плоскость П1, показанная на рисунке.

Ту же самую поверхность можно получить, если за направляющие прямые принять любую пару образующих, например АВ(А1В1, А2В2) и СD(С1D1, С2D2), за образующую прямую - одну из направляющих (m или n) и за плоскость параллелизма - плоскость (2), параллельную прямым m и n. Таким образом, косая плоскость имеет два семейства прямолинейных образующих и две плоскости параллелизма. Образующие одного семейства - скрещивающиеся прямые, каждая образующая одного семейства пересекает все образующие второго. Поэтому через каждую точку поверхности проходят две прямолинейные образующие разных семейств.

Косую плоскость называют также гиперболическим параболоидом, так как при пересечении ее соответствующими плоскостями в сечении можно получить параболы и гиперболы. Геометрическая часть определителя косой плоскости состоит из направляющих прямых и плоскости параллелизма: Алгоритмическая часть определителя состоит из указания о том, что любая образующая поверхности может быть построена как прямая, пересекающая направляющие прямые и параллельная плоскости параллелизма.

Гиперболический параболоид, называемый в строительстве «гипар» может быть образована движением параболы, ветви которой направлены вниз, по параболе, ветви которой направлены вверх, при условии, что первая парабола соприкасается со второй своей вершиной.

Винтовые поверхности

Поверхность, образованная винтовым движением прямой линии, называется линейчатой винтовой поверхностью - геликоидом (винтовое движение характеризуется вращением вокруг некоторой оси i и поступательным перемещением, параллельным этой оси).

Наклонный геликоид

Наклонным геликоидом называется поверхность, образованная движением прямой линии, cкользящей по двум направляющим (одна из них цилиндрическая винтовая линия, а вторая - ось винтовой линии) и сохраняющей во всех положениях постоянный угол с направляющей плоскостью, которую располагают перпендикулярно оси винтовой поверхности. При построении проекций наклонного геликоида удобно пользоваться направляющим конусом.

КАНАЛОВЫЕ И ЦИКЛИЧЕСКИЕ ПОВЕРХНОСТИ

Каналовой называют поверхность, образованную непрерывным каркасом замкнутых плоских сечений, определенным образом ориентированных в пространстве. Площади этих сечений могут оставаться постоянными или монотонно изменяться в процессе перехода от одного сечения к другому.

Циклическую поверхность можно рассматривать как частный случай каналовой поверхности. Она образуется с помощью окружности, центр которой перемещается по криволинейной направляющей. В процессе движения радиус окружности монотонно меняется.

Трубчатая поверхность относится к группе нелинейчатых поверхностей с образующей постоянного вида и является частным случаем циклической и каналовой поверхностей. Она обладает свойствами, присущими этим видам поверхностей. У циклической поверхности она позаимствовала форму образующей, а у каналовой - закон движения этой образующей.