Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
реферат МЭТ.docx
Скачиваний:
132
Добавлен:
12.02.2015
Размер:
98.8 Кб
Скачать

Механические свойства кремния

Монокристаллический кремний отнюдь нельзя отнести к непрочным материалам. По значению основных показателей (модулю Юнга, твердости, пределу текучести) кремний стоит в одном ряду с железом и сталью. Это наглядно проявляется при выращивании больших слитков МКК, когда слиток весом порядка 40 кг висит на затравочном кристалле диаметром 2мм. Основное отличие в поведении кремния состоит в том, что под большой нагрузкой он разрушается (крошится), тогда как металлы просто деформируются. В то же время на практике при работе с пластинами кремния необходимо соблюдать осторожность, что связано со следующими факторами.

Во-первых, чаще всего работают с кремнием в виде больших пластин (диаметром порядка 100 мм), имеющих малую толщину (0,25¸0,4 мм). При таких размерах легко деформируются и стальные пластины, а кремний легко раскалывается при неосторожном обращении. Кристаллы малых размеров, площадью порядка 5х5 мм2 достаточно прочны.

Во-вторых, всегда следует помнить об особенностях структуры МКК. Кремний почти всегда раскалывается вдоль кристаллографических плоскостей, в особенности если есть локальные краевые, поверхностные или объемные нарушения структуры, создающие концентрации напряжений.

Неправильное раскалывание может происходить за счет неравномерности нагрузки и появлении дефектов при резке и скрайбировании.

В-третьих, разрушение пластин может происходить при высокотемпературной обработке и нанесении пленок с плохо согласованным коэффициентом теплового расширения, что также приводит к появлению дефектов и перенапряжений.

Таким образом, потенциально прочный материал МКК и изделия из него очень чувствительны к условиям производства и использования. Поэтому при работе необходимо соблюдать ряд правил, соблюдение которых позволяет получить очень прочные изделия. Перечислим их:

  • Кремний должен иметь возможно меньшую плотность объемных, поверхностных и краевых дефектов, чтобы снизить количество потенциальных областей концентрации напряжений.

  • Компоненты, подвергающиеся механическому воздействию при эксплуатации, должны иметь минимально возможные размеры. Все компоненты, выполненные из МКК, независимо от размеров, должны располагаться на жесткой механической опоре (подложке) для облегчения влияния механических воздействий.

  • Процессы механической обработки (резка, шлифовка, полировка, скрайбирование), приводящие к появлению краевых или поверхностных нарушений, должны заменяться химическим травлением или подобными операциями. Если механическая обработка все же применяется, после нее должно проводиться дополнительное финишное химическое обтравливание.

  • Даже если основными процессами формирования изделия из МКК является анизотропное травление, позволяющее получить геометрически точные «острые» края и углы в структуре, целесообразна последующая обработка детали изотропным травителем для сглаживания этих острых граней и устранения мест накопления напряжений.

  • Поверхность изделий, выполненных из МКК, целесообразно защищать прочными, твердыми и коррозионно стойкими покрытиями, чаще всего из карбида кремния (SiC) или нитрида кремния (Si3N4), получаемые методом химического осаждения.

  • Для пассивации поверхности кремния используют также высокополимерные пленки. В частности, разработаны методы осаждения полиимидных пленок, а также пленок из парилена. Такие пленки не содержат сквозных отверстий и надежно прикрывают острые выступы, края и отверстия.

  • Также как и в микроэлектронике, предпочтительнее применять низкотемпературные технологические методы обрабоки (в частности плазменное окисление), поскольку это позволяет избежать высокотемпературного циклирования и снизить влияние механических напряжений, возникающих из-за разницы коэффициентов теплового расширения разнородных слоев в компоненте. Структуры на МКД имеют уникальные свойства и по механической усталости. Образование усталостных трещин обычно начинается с поверхности напряженных элементов. Высокое кристаллическое совершенство МКК в сочетании с качеством поверхности, достигаемой химической обработкой, позволяет получить высокую усталостную прочость. Установлено, что поверхность, находящаяся под давлением, имеет большую усталостную прочность, чем свободная. Поэтому пленки покрытий, например Si3N4, поддерживающие поверхность кремния в состоянии напряжения-сжатия, также способствуют повышению усталостной прочности.