
- •Оглавление
- •Введение
- •Теплопроводность.
- •Основной закон теплопроводности.
- •1.2 Дифференциальное уравнение теплопроводности и условия однозначности.
- •1.2.1 Дифференциальное уравнение.
- •1.2.2 Условия однозначности.
- •1.3 Теплопроводность при стационарном режиме.
- •1.3.1.Теплопроводность плоской однослойной стенки.
- •1.3.2. Теплопроводность многослойной стенки.
- •1.4 Теплопроводность цилиндрической стенки.
- •1.4.1 Теплопроводность однослойной цилиндрической стенки.
- •1.4.2 Теплопроводность многослойной цилиндрической стенки.
- •1.5. Теплопроводность тел неправильной формы.
- •1.6. Нестационарная теплопроводность.
- •1.6.1 Общие положения. Описание процесса.
- •1.6.2 Решение задач нестационарной теплопроводности.
- •1.6.3. Охлаждение тел конечных размеров.
- •1.6.4 Зависимость процесса охлаждения от формы и размеров тела.
- •2. Теплопередача при стационарных условиях и граничных условиях 3 рода.
- •2.1 Теплопередача через плоскую стенку.
- •2.1.1 Теплопередача через однослойную стенку.
- •2.1.2 Теплопередача через многослойную стенку.
- •2.2 Теплопередача через цилиндрическую стенку при граничных условиях 3-го рода.
- •2.2.1 Теплопередача через однослойную цилиндрическую стенку.
- •2.2.2 Теплопередача через многослойную цилиндрическую стенку.
- •2.2.3 Теплопередача через шаровую стенку.
- •2.3. Интенсификация теплопередачи.
- •2.4. Критический диаметр изоляции.
- •3. Конвективный теплообмен.
- •3.1Основные понятия и определения.
- •3.2. Дифференциальные уравнения конвективного теплообмена.
- •3.3.Основы теории подобия.
- •Условия подобия физических процессов.
- •3.4. Теплоотдача при вынужденном продольным омывании плоской поверхности
- •3.4.1. Расчет теплоотдачи при ламинарном гидродинамическом пограничном слое.
- •3.4.2. Зависимость теплоотдачи от изменения температуры по ее длине.
- •3.4.3. Влияние на теплоотдачу необогреваемого начального участка
- •3.4.4. Теплоотдача при турбулентном пограничном слое
- •3.5. Теплоотдача при вынужденном течении жидкости в трубах
- •3.5.1. Теплоотдача при ламинарном режиме движения жидкости.
- •3.5.2. Теплоотдача при турбулентном режиме движения жидкости в трубах.
- •3.5.3. Теплоотдача при переходном режиме
- •3.5.4. Теплоотдача в трубах некруглого поперечного сечения.
- •3.5.5 Теплоотдача в изогнутых трубах
- •3.5.6. Теплоотдача в шероховатых трубах
- •3.6 Теплоотдача при вынужденном поперечном омывании труб и пучков труб.
- •3.61.Теплоотдача при поперечном омывании одиночной круглой трубы.
- •3.6.2 Теплоотдача при поперечном омывании пучков труб.
- •4. Теплоотдача при свободном движении жидкости.
- •4.1 Свободный теплообмен в неограниченном пространстве около верикальной плиты или трубы.
- •4.2 Теплоотдача при свободном движении около горизонтальной трубы.
- •4.3 Движение жидкости около нагретых горизонтальных плоских стенок.
- •4.4 Теплоотдача при свободном движении жидкости в ограниченном пространстве.
- •2)Если ширина щели мала, внутри щели возникают циркуляционные контуры.
- •5.Теплообмен при кипении жидкости
- •5.1.Основные представления о процессе кипения
- •Режимы кипения
- •Минимальный радиус пузырька
- •Отрывной диаметр пузырька
- •Кривая кипения
- •Влияние некоторых факторов на интенсивность теплоотдачи при кипении
- •5.2Кризисы кипения
- •Первый кризис кипения
- •Второй кризис кипения
- •5.3.Пузырьковое кипение
- •5.3.1.Пузырьковое кипение жидкости в неограниченном объеме
- •5.3.2.Расчет теплоотдачи при пузырьковом кипении жидкости в неограниченном объеме
- •5.3.3Пузырьковое кипение в условиях вынужденного движения в трубах.
- •Структура двухфазного потока
- •Вертикальные трубы
- •Горизонтальные и наклонные трубы
- •Структура потока при кипении жидкости внутри горизонтальной трубы.
- •Изменение избыточной температуры стенки по периметру при кипении жидкости внутри горизонтальной трубы.
- •5.3.4.Зависимость теплоотдачи от параметра х. Кризис кипения второго рода
- •5.3.5.Расчет теплоотдачи при кипении в трубах
- •5.4. Пленочное кипение жидкости
- •5.4.1. Теплоотдача при ламинарном движении паровой пленки
- •5.4.2.Теплоотдача при турбулентном движении паровой пленки
- •6. Излучение.
- •6.1. Основные законы теплового излучения
- •6.1.1. Виды лучистых потоков
- •6.1.2. Законы теплового излучения твердого тела. Закон Планка
- •Закон смещения Вина
- •Закон Стефана – Больцмана
- •Закон Кирхгофа
- •Закон Ламберта
- •6.2 Теплообмен излучением в системе произвольно расположенных тел
- •Частные случаи
- •6.2.1.Теплообмен излучением при наличии экранов
- •6.3 Излучение газов
- •Отличие излучения газа от излучения твердых тел
- •6.3.1 Теплообмен в поглощающих и излучающих средах
- •Оптическая толщина среды и режимы излучения
- •6.3.2 Излучение паров и газов
- •Основные полосы спектров поглощения и.
- •7. Тепловой расчет теплообменных аппаратов
- •7.1 Основные положения и уравнения теплового расчета
- •Уравнение теплового баланса
- •Уравнение теплопередачи
- •7.2 Вычисление средней разности температур
3.4.1. Расчет теплоотдачи при ламинарном гидродинамическом пограничном слое.
Толщина ламинарного гидродинамического пограничного слоя:
,
,
где x –расстояние от начала пластины.
Толщина теплового пограничного слоя:
,
где
.
Для
капельных жидкостей Pr
1
К
;
Для
газов 0,6 < Pr
< 1, воздух Pr0,7
K
>
.
Толщина
теплового пограничного слоя отличается
от толщины гидродинамического
пограничного слоя, однако, эта разница
невелика и в расчетах принимают, что
толщина ламинарного пограничного
теплового слоя равна гидродинамическому:
К.
Исключение составляют жидкие металлы
(К>>>
)
.
Коэффициент
теплоотдачи в пограничном слое
,
где
-
коэффициент теплопроводности.
В общем случае коэффициент теплоотдачи является функцией чисел Рейнольдса и Прандтля:
=
.
Применение теории подобия позволило получить следующие расчетные формулы:
Число
Нуссельта
описывающее текущее изменение
по длине пластины Х определится:
Х
,
(1)
где
,
,
где x – расстояние от начала пластины до рассматриваемой точки.
Число
Pr
характеризует физические свойства
жидкости:
(значения приводятся в справочных
таблицах).
Если известно расстояние от начала пластины x, то коэффициент теплоотдачи определится:
.
Средние значения коэффициента теплоотдачи можно определить используя уравнение:
,
(2)
где определяющим размером является длина пластины l ;
,
.
В
этом случае
.
Эти
уравнения получены без учета изменения
физических параметров жидкости(газа)
от температуры. Иногда эти факторы
необходимо учитывать при расчетах,
поскольку в общем случае
капельных
жидкостей зависит от рода жидкости, от
ее температуры, от направления теплового
потока и температурного напора.
Особенно большое значение на теплоотдачу оказывает изменение вязкости жидкости. Для газов изменение физических параметров от температуры слабо влияет на поля температур и скоростей, а значит и на коэффициент теплоотдачи.
Михеев
Н.А.
предложил влияние вязкости приближенно
учитывать с помощью дополнительного
множителя
,
где числа “ж”
и “с”
обозначают,
что соответствующие числа Pr
выбирают при температуре жидкости (ж)
в ядре потока или вдали от стенки и по
температуре жидкости равной температуре
стенки (с).
С учетом изменения вязкости уравнение (1) примет вид:
,
а уравнение (2):
.
На газы эта поправка не распространяется.
Если
жидкость нагревается, то
>1;
охлаждается
-
<1,
то
есть
.
Иногда в уравнениях подобия изменение вязкости учитывается поправками в виде:
,
,
.
3.4.2. Зависимость теплоотдачи от изменения температуры по ее длине.
Изменение температуры поверхности или температурного напора по длине можно описать степенным законом:
,
где
;
иm
–
постоянные.
-
температура стенки;
-
температура среды вдали от стенки.
Если
m
=0, то
=А=
-
=const
Влияние изменения температуры учитывается поправочным коэффициентом Е:
.
Значения Е
приводятся в литературе.
Уравнение подобия в этом случае примет вид:
.