Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Презентации по математике / Лекции 2 семестр / Элементы мат.статистики.doc
Скачиваний:
254
Добавлен:
11.02.2015
Размер:
2.3 Mб
Скачать

Приложение

Таблица 1. Критические точки t-распределения Стьюдента.

Таблица 2. Значения F-критерия Фишера.

Таблица 3. Критические значения U-критерия (Манна-Уитни) (односторонний критерий, Р = 0,01).

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

3

0

0

0

0

1

1

1

2

2

2

3

3

4

4

4

5

3

4

0

1

1

2

3

3

4

5

5

6

7

7

8

9

9

10

4

5

I

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

5

6

3

4

6

7

8

9

11

12

14

15

16

18

19

20

22

6

7

6

7

9

11

12

14

16

18

19

21

23

24

26

28

7

8

9

П

13

15

17

20

22

24

26

28

30

32

34

8

9

14

16

19

21

23

26

28

31

33

36

38

40

9

10

19

22

24

27

30

33

36

38

41

44

47

10

11

25

28

31

34

37

41

44

47

50

53

11

12

31

35

38

42

46

49

53

56

60

12

13

39

43

47

51

55

59

63

67

13

14

47

51

56

60

65

69

73

14

15

56

61

66

70

75

80

15

16

66

71

76

82

87

16

17

77

82

88

94

17

18

88

94

100

18

19

101

107

19

20

114

20

Таблица 4. Критические значения z-критерия знаков.

Таблица 5. Критические точки распределения

Число степеней свободы n

Уровень значимости α

0,01

0,025

0,05

0,95

0,975

0,89

1

6,6

5,0

3,8

0,0039

0,00098

0,00016

2

9,2

7,4

6,0

0,103

0,051

0,020

3

11,3

9,4

7,8

0,352

0,216

0,115

4

13,3

11,1

9,5

0,711

0,484

0,297

5

15,1

12,8

11,1

1,15

0,831

0,554

6

16,8

14,4

12,6

1,64

1,24

0,872

7

18,5

16,0

14,1

2,17

1,69

1,24

8

20,1

17,5

15,5

2,73

2,18

1,65

9

21,7

19,0

16,9

3,33

2,70

2,09

10

23,2

20,5

18,3

3,94

3,25

2,56

11

24,7

21,9

19,7

4,57

3,82

3,05

12

26,2

23,3

21,0

5,23

4,40

3,57

13

27,7

24,7

22,4

5,89

5,01

4,11

14

29,1

26,1

23,7

6,57

5,63

4,66

15

30,6

27,5

25,0

7,26

6,26

5,23

16

32,0

28,8

26,3

7,96

6,91

5,81

17

33,4

30,2

27,6

8,67

7,56

6,41

18

34,8

31,5

28,9

9,39

8,23

7,01

19

36,2

32,9

30,1

10,1

8,91

7,63

20

27,6

34,2

31,4

10,9

9,59

8,26

21

38,9

35,5

32,7

11,6

10,3

8,90

22

40,3

36,8

33,9

12,3

11,0

9,54

23

41,6

38,1

35,2

13,1

11,7

10,2

24

43,0

39,4

36,4

13,8

12,4

10,9

25

44,3

40,6

37,7

14,6

13,1

11,5

26

45,6

41,9

38,9

15,4

13,8

12,2

27

47,0

43,2

40,1

16,2

14,6

12,9

28

48,3

44,5

41,3

16,9

15,3

13,6

29

49,6

45,7

42,6

17,7

16,0

14,3

30

50,9

47,0

43,8

18,5

16,8

15,0

Лекция № 9 по теме: «Элементы дисперсионного анализа»

Дисперсионный анализ – это статистический метод анализа результатов наблюдений, зависящих от различных, одновременно действующих факторов, выбор наиболее важных факторов и оценка их влияния. Дисперсионный анализ находит применение в различных областях науки и техники.

Известно, что многие признаки и свойства живых организмов находятся под влиянием различных факторов: наследственности, условий среды, внутренних факторов организма, искусственного отбора. Степень и направленность воздействия различных факторов неодинаковы, поэтому важно определить долю влияния отдельных факторов на изменчивость признака. Для решения подобной задачи используют метод дисперсионного анализа, разработанный Р.Фишером.

Сущность дисперсионного анализа состоит в установлении роли отдельных факторов в изменчивости признака.

В зависимости от количества изучаемых факторов различают однофакторный и многофакторный дисперсионный анализ. Рассмотрим подробнее метод однофакторного дисперсионного анализа.

Однофакторный дисперсионный анализ.

Предположим, что имеется выборок с объемами , , , и наблюдения можно представить в виде , где - номер наблюдения в выборке; - номер выборки; - групповые математические ожидания; - случайные ошибки с =0, о которых предполагается, что они независимы и одинаково расположены.

Подобная ситуация возникает, когда существует некий фактор, принимающий различных значений (называемых уровнями), и каждая группа объектов, чьи признаки мы примеряем, подвергается воздействию определенного уровня этого фактора. Методы математической статистики, изучающие воздействие одного фактора на объекты и их признаки, называют в совокупности однофакторным анализом.

Предполагается, что ошибки нормально распределены: . Тогда можно изучать влияние фактора, вычисляя дисперсии некоторых величин. Совокупность этих методов называют однофакторным дисперсионным анализом.

Основной гипотезой, нуждающейся в проверке, является гипотеза о равенстве групповых средних . Иными словами, проверяют гипотезу о том, что фактор вообще не влияет на наблюдения. В случае нормальных ошибок ее можно проверить, вычислив две разные оценки дисперсии.

Рассмотрим группу экспериментальных животных, подвергнутых ультрафиолетовому облучению. В процессе эксперимента измерялась температура тела животных. Результаты измерений были занесены в таблицу:

№ испытания

Уровень фактора А

(мощность ультрафиолетового облучения)

А1

А2

А3

1

2

3

4

37,4

37,3

37,0

36,9

37,8

37,9

37,5

37,4

38,0

37,9

38,4

38,3

37,15

37,65

38,15

Физический фактор А (ультрафиолетовое излучение) имеет постоянных уровней (3 различных мощности облучения). На всех уровнях распределения случайной величины Х (температуры тела животного) предполагается нормальным, а дисперсии одинаковыми, хотя и неизвестными.

В данном эксперименте число проведенных наблюдений при действии каждого из уровней фактора одинаково.

Все значения величины Х, наблюдаемые при каждом фиксированном уровне фактора Аj, составляют группу, и в последней строке таблицы представлены соответствующие выборочные групповые средние, вычисленные по формуле

.

Здесь n – число испытаний, – номер столбца, - номер строки, в которой расположено данное значение случайной величины. Общая средняя арифметическая всех наблюдений находится как

.

Введем следующие понятия:

Факторная сумма квадратов отклонений групповых средних от общей средней , которая характеризует рассеивание «между группами» (т.е. рассеивание за счет исследуемого фактора):

,

Остаточная сумма квадратов отклонений наблюдаемых значений группы от своей групповой средней , которая характеризует рассеивание «внутри групп» (за счет случайных причин):

.

Общая сумма квадратов отклонений наблюдаемых значений от общей средней :

,

Можно доказать следующее равенство:

.

С помощью , производится оценка общей, факторной и остаточной дисперсий:

,

,

.

В основе однофакторного дисперсионного анализа лежит тесная связь между различием в групповых средних и соотношением между двумя видами дисперсий – факторной, которая характеризует влияние фактора А на величину Х, и остаточной, которая характеризует влияние случайных причин. Сравнивая факторную дисперсию с остаточной по величине их отношения судят, насколько сильно проявляется влияние фактора.

Для сравнения двух дисперсий используют показатель критерия Фишера .

При этом при заданном уровне значимости проверяют нулевую гипотезу о равенстве факторной и остаточной дисперсии (изучаемый фактор не вызывает изменчивости признака) при конкурирующей гипотезе об их неравенстве (изучаемый фактор вызывает изменчивость признака).

По таблице критических значений распределения Фишера – Снедекора (см. приложение 6) при уровне значимости, равном половине заданного уровня , находят критическое значение . Здесь . Если , нулевую гипотезу считают согласующейся с результатами наблюдений. Если , то эту гипотезу отвергают в пользу конкурирующей.

Замечание. Если окажется, что , следует сделать вывод об отсутствии влияния фактора А на Х.

Если проверка покажет значимость различий между и ,следует сделать вывод о существенном влиянии фактора А на Х.

Обычно для упрощенная расчетов фактурную и остаточную дисперсии рассчитывают не по экспериментальным значениям величины Х, а по значениям , где постоянная С представляет собой произвольное число, близкое к среднему значению всех результатов наблюдений.

Вернемся к нашему примеру. Вычтем из всех значений постоянное число С=37,5 близкое к общему среднему =37,51 и составим таблицу:

№ испытания

Уровень фактора А

(мощность ультрафиолетового облучения)

А1

А2

А3

1

2

3

4

-0,1

-0,2

-0,5

-0,6

0,3

0,4

0

-0,1

0,5

0,4

0,9

0,8

-0,35

0,15

0,65

Общая средняя будет равна

Определим значения ,

Определим значения факторной и остаточной дисперсий:

,

.

Так как , следует проверить значимость их различия. Найдем экспериментальное значение критерия:

.

Сравним его с критическим значением распределения Фишера – Снедекора для уровня значимости 0,05 (см. приложение 6):

.

Поскольку можно утверждать, что при уровне значимости

=0,05 рассматриваемый физический фактор оказывает влияние на температуру тела животного.

Критерий Фишера указывает на влияние изучаемого фактора (если ) на изменчивость признака. Однако он не указывает на силу влияния этого фактора. В качестве показателя силы влияния фактора на изменчивость признака используют величину:

.

Оценим силу влияния ультрафиолетового облучения на повышение температуры тела животных:

или 80,5%

Таким образом, влияние ультрафиолетового облучения на повышение температуры тела животных составляет 80,5%, а 19,5% обусловлены случайными причинами.

Двухфакторный дисперсионный анализ

Двухфакторные комплексы по своей структуре более сложны, чем однофакторные.

Объединение в один статистический комплекс допускается только таких факторов, которые независимы друг от друга (например, тип кормления и доза облучения, возраст и пол и т.д.).

Чтобы построить двухфакторную дисперсионную модель все имеющиеся данные представим в виде табл. 1, в которой по строкам - уровни фактора А, по столбцам - уровни фактора В, а в соответствующих клетках, или ячейках, таблицы находятся значения признака (i=1,2…, m; j=1,2…, l; k=1,2…, n):

Таблица 1.

В

А

В1

В2

Вj

Вl

А1

А2

.

.

.

Аj

.

.

.

Аm

Двухфакторная дисперсионная модель имеет вид:

(1)

где - значение наблюдения в ячейке ij c номером k;

- общая средняя;

- эффект, обусловленный влиянием i-го уровня фактора А;

- эффект, обусловленный влиянием j-го уровня фактора B;

- эффект, обусловленный взаимодействием двух факторов, т.е. отклонение от средней по наблюдениям в ячейке ij от суммы первых трех слагаемых в модели (1);

- возмущение, обусловленное вариацией переменной внутри отдельной ячейки.

Полагаем, что имеет нормальный закон распределения , а все математические ожидания равны нулю.

Групповые средние находятся по формулам:

в ячейке -

(2)

по строке -

, (3)

по столбцу –

(4)

Общая средняя

(5)

Таблица дисперсионного анализа имеет вид:

Таблица 2

Компоненты дисперсии

Сумма квадратов

Число степеней свободы

Средние квадраты

Межгрупповая

(фактор А)

m-1

Межгрупповая

(фактор В)

l-1

Взаимодействие

(АВ)

(m-1)(l-1)

Остаточная

mln-ml

Общая

mln-1

Можно показать, что проверка нулевых гипотез об отсутствии влияния на рассматриваемую переменную факторов А, В и их взаимодействия АВ осуществляется сравнением отношений .

Если n=1, т.е. при одном наблюдении в ячейке, то не все нулевые гипотезы могут быть проверены, так как выпадает компонента из общей суммы квадратов отклонений, а с ней и средний квадрат , ибо в этом случае не может быть речи о взаимодействии факторов.

Пример. В табл. 3 приведены суточные привесы (г) отобранных для исследования 18 поросят в зависимости от метода содержания поросят (фактора А) и качества их кормления (фактор В).

Таблица 3.

Количество голов в группе (фактор А)

Содержание протеина в корме, г (фактор В)

В1=80

В2=100

А1=30

530,540,550

600,620,580

А2=100

490,510,520

550,540,560

А3=300

430,420,450

470,460,430

Необходимо на уровне значимости оценить существенность (достоверность) влияния каждого фактора и их взаимодействия на суточный привес поросят.

Решение. Имеем m=3, l=2, n=3. Определим (в г) средние значения привеса:

в ячейках – по (формуле 2)

и аналогично

;

по строкам – по (3):

и аналогично

по столбцам – (4):

и аналогично

Общий средний привес – по (5):

.

Все средние значения привеса (г) поместим в табл. 3

Таблица 3.

Количество голов в группе

(фактор А)

Содержание протеина в корме, г (фактор В)

В1=80

В2=100

А1=30

А2=100

А3=300

Из табл. 3 следует, что с увеличением количества голов в группе средний суточный привес поросят в среднем уменьшается, а при увеличении содержания протеина в корме - в среднем увеличивается. Но является ли эта тенденция достоверной или объясняется случайными причинами? Для ответа на этот вопрос по формулам табл. 2 вычислим необходимые суммы квадратов отклонений:

;

;

Средние квадраты находим делением полученных сумм на соответствующие им число степеней свободы m-1=2, l-1=1; (m-1)(l-1)=2; mln-ml=18-6=12; mln-1=18-1=17.

Результаты расчета сведем в табл. 4.

Очевидно, данные факторы имеют фиксированные уровни, т.е. мы находимся в рамках модели I. Поэтому для проверки существенности влияния факторов А, В и их взаимодействия АВ необходимо найти отношения:

,

и сравнить их с табличными значениями (см. приложение 6) соответственно Так как и , то влияние метода содержания поросят (фактор А) и качества их кормления (фактор В) является существенным. В силу того что взаимодействие указанных факторов незначимо (на 5%-ном уровне).

Таблица 4.

Компонента дисперсии

Суммы квадратов

Число степеней свободы

Средние квадраты

Межгрупповая (фактор А)

2

Межгрупповая (фактор В)

1

Взаимодействие (АВ)

2

Остаточная

12

Общая

17