
- •Вопросы к экзамену Экология
- •Экология как наука. История науки. К. Либих, Буссенго, л. Пастер. Роль теории ч. Дарвина в становлении современной экологии. Э. Геккель.
- •Современная структура экологии
- •Международные экологические программы: Международная биологическая и программы, Человек и биосфера. Цели и значение.
- •Уровни организации живой материи и биологические системы. Экологические проблемы по уровням организации жизни
- •Структура биосферы: фитосфера, гипобиосфера, метабиосфера, абиосфера, альтобиосфера, парабиосфера, апобиосфера, гидробиосфера. Границы биосферы.
- •Структура популяций: половая, возрастная, генетическая, пространственная, экологическая.
- •Основные понятия: биогеоценоз, биоценоз, фитоценоз, зооценоз, микробоценоз, биом. Компоненты биогеоценоза. Биоценоз и его структурная организация. Понятие об экотопе и биотопе.
- •Состав и функциональная структура экосистемы. Деление организмов по способу питания и деструкции.
- •Основные среды жизни и их характеристика. Факторы среды.
- •Характеристика наземно-воздушной среды. Анатомо-морфологические, физиологические, поведенческие и другие адаптации.
- •Живые организмы как среда обитания. Экологические преимущества и экологические трудности паразитов
- •Определение понятия экологический фактор. Классификация экологических факторов по времени, происхождению, по форме воздействия и др. Изменение факторов среды во времени.
- •Характеристика абиотических и биотических факторов. Формы воздействия экологических факторов и их компенсация.
- •Критерии экологического фактора. Понятие о толерантности организмов. Неоднозначность действия фактора на разные функции. Правило взаимодействия фактора. Приведите примеры.
- •Закон оптимума. Точка оптимума и зона оптимума. Понятие об экологической валентности. Эври и стено валентные организмы. Приведите примеры.
- •Несовпадение экологических спектров отдельных видов. Правило экологической индивидуальности видов л. Раменского.
- •Экологическая роль климатических факторов. Биота и климат как экологический фактор. Стенотермные и эвритермные виды. Пойкилотермные и гомойотермные животные.
- •Зависимость активности организмов от температуры. Тепловой преферендум. Влияние температуры на географическое распределение животных
- •Влияние низких температур на плотность популяции. Летняя и зимняя спячка. Криофиты и психрофиты. Признаки ксероморфизма у тундровых растений.
- •Зависимость активности организмов от температуры. Минимальная и максимальная температура как ограничивающий фактор.
- •Пути адаптации к высоким температурам. Адаптации к экстремальным низким температурам. Приведите примеры. Анабиоз как мера борьбы с холодом.
- •Правило Бергманна об увеличении тела животных с непостоянной температурой тела при удалении от полюсов. Причины и исключения (приведите примеры).
- •Правило Аллена об уменьшении площади выступающих частей тела у животных с постоянной температурой тела в холодных зонах. Причины, исключения (приведите примеры).
- •Биоклиматический закон а. Холкинса (1918) об изменении фенологических явлений в жизнедеятельности организмов при продвижении в горы и на север. Причины. Биполярность.
- •Свет как экологический фактор. Пути расходования солнечной энергии на поверхности земли. Физиологически активная радиация. Световой режим. Количественная характеристика света.
- •Для чего зеленым растениям нужен свет? Сезонная динамика.
- •Причины изменения светового режима. Экологические группы растений по отношению к свету и их адаптивные особенности.
- •Признаки теневыносливости. Анатомическая, морфологическая и физиологическая характеристика гелиофитов Привести примеры. Пространственная ориентация листьев.
- •Анатомическая, морфологическая и физиологическая характеристика сциофитов. Привести примеры.
- •Растения короткого и длинного дня. Фотопериодизм и биологические ритмы.
- •Свет как условие ориентации животных. Фотофилы и фитофобы, эврифитные и стенофитные. Адаптации. Примеры. Фототаксисы. Навигационная способность птиц.
- •Вода как экологический фактор. Свойства воды и ее биологическая роль. Аридные и гумидные условия. Вода в почве.
- •Абиотические факторы в водной среде. Текучесть воды и явление реотропизма. Эвригалинные и стеногалинные водные виды, примеры
- •41. Классификация живых организмов по их потребности в воде. Гидрофильные, мезофильные, ксерофильные; стеногигрические и эвригигрические организмы.
- •42. Источник получения воды у животных. Поиск воды у животных. Приведите примеры. Потери воды и механизмы защиты от обезвоживания.
- •43. Влияние влажности на жизнь животных: на продолжительность жизни, плодовитость, поведение, географическое распространение. Приведите примеры.
- •44. Водный баланс растений. Пойкилогидрические и гомойогидрические растения. Адаптации растений к поддержанию водного баланса. Типы корневых систем.
- •45. Экологические группы растений по отношению к воде. Гидатофиты. Ксерофиты, мезофиты, гидрофиты, гигрофиты и их адаптации к условиям увлажнения.
- •46. Поступление воды в растение. Водный дефицит. Пойкилогидридные и гомеогидридные организмы. Потери воды и солевой баланс.
- •47. Вода как среда обитания организмов. Хроматическая адаптация. Характеристика и адаптации гидатофитов и гидрофитов. Приведите примеры.
- •48. Гигрофиты. Адаптации. Приведите примеры.
- •49. Характеристика склерофитов. Анатомо-морфологические и физиологические адаптации. Приведите примеры.
- •50. Характеристика суккулентов. Анатомо-морфологические и физиологические адаптации. Приведите примеры.
- •51. Эдафические факторы. Экологическое значение механического состава почв. Экологическое значение химических свойств почв. Физическая и физиологическая сухость почвы.
- •53. Экологические особенности песчаных субстратов. Экология растений сыпучих песков. Животные пустынь и их адаптации. Примеры.
- •54/ Засоленные местообитания. Экология растений засоленных почв. Адаптации галофитов. Примеры.
- •Ветер как экологический фактор. Анемофилия и анемохория. Жизненная форма перекати-поле. Бурелом, ветровал.
- •57. Рельеф как экологический фактор. Типы рельефа. Вертикальная поясность. Типы вертикальной поясности Кавказа в сравнении с другими горными системам.
- •58. Особенности вертикальной поясности Западного Кавказа. Причины и следствия. Приведите примеры.
- •Субальпиские криволесья и редколесья
- •59. Экология высокогорных растений. Влияние экспозиции и крутизны склонов на формирование биотических комплексов.
- •60. Понятие жизненная форма. Характеристика жизненных форм по Раункиеру как адаптация к экологическим факторам
- •61. Понятие жизненная форма. Характеристика жизненных форм по Серебрякову как адаптация к экологическим факторам.
- •62. Жизненные формы животных как адаптация к экологическим факторам. Понятие конвергенции. Примеры.
- •63. Понятие о местообитании. Представление об экологической нише. Принцип конкурентного исключения. Правило обязательности заполнения экологических ниш. Специализированные и общие ниши. Примеры.
- •64. Фундаментальная, потенциальная и реализованная ниша. Перекрывание ниш.
- •65. Фитогенные факторы: симбиоз, эндотрофная и экзотрофная микориза. Значение. Приведите примеры.
- •66. Межвидовые биотические факторы. Конкуренция и распространение видов в природе. Межвидовая конкуренция.
- •67. Внутривидовая конкуренция. Принцип конкурентного исключения Гаузе.
- •68. Симбиотические отношения: мутуализм, комменсализм, нейтрализм. Примеры.
- •69. Хищничество. Реакция хищника на плотность популяции жертвы. Популяционные стратегии хищника и жертвы.
- •70. Паразитизм, сопряженная эволюция паразита и хозяина. "Паразитарная система". Стратегия эволюции паразитических организмов. Виды зависимости хищника или паразита от жертвы или хозяина. (?)
- •72. Антропогенное нарушение экосистем. Роль человека в расселении видов. Виды синантропы. Антропогенные лимитирующие факторы.
- •73. Эволюционные реакции. Индустриальный меланизм. Нарушения среды, вызванные человеком и эволюционные изменения.
- •74. Преднамеренное и непреднамеренное, прямое и косвенное воздействие человека на природу. Проблемы техногенеза. Экология и здоровье.
- •75. Экологический кризис. Ограниченность ресурсов и загрязнение среды как фактор, лимитирующий развитие человечества.
- •76. Пища как экологический фактор. Полифагия, олигофагия, монофагия. Питание растений, бактерий. Недостаток пищи как ограничивающий фактор. Устойчивость к голоданию.
- •77. Питание животных: стенофаги и эврифаги. Автотрофы, гетеротрофы (бактерии, грибы, животные). Хемосинтез, жизнь в анаэробных условиях.
- •79. Пространственная структура: вертикальная и горизонтальная. Роль видов в фитоценозе: эдификатор, субэдификатор, ассектатор. Приведите примеры.
- •80. Границы экосистем, представление об экотопе, биотопе, краевом эффекте, экотоне. Компоненты экосистем. Динамика экосистем. Гомеостаз экосистемы.
- •81. Трофическая структура: автотрофы, гетеротрофы. Продуценты, консументы, редуценты. Пищевые цепи и сети. Типы пищевых цепей: "выедания" (пастбищные) и "разложения" (детритные).
- •82. Основные черты эволюции человека.
- •83. Человек в экосфере. Человек с точки зрения законов эволюции. Основные факторы антропогенеза.
76. Пища как экологический фактор. Полифагия, олигофагия, монофагия. Питание растений, бактерий. Недостаток пищи как ограничивающий фактор. Устойчивость к голоданию.
Пища необходима для нормальной жизнедеятельности организма. В течение всей жизни в организме непрерывно совершается обмен веществ и энергии. Источником необходимых организму материалов и энергии являются питательные вещества, поступающие из внешней среды в основном с пищей. Ее качество и количество способны изменять плодовитость, продолжительность жизни, развитие и смертность живых существ. Помимо этого, разнообразие пищевых рационов лежит в основе многочисленных морфологических, физиологических и экологических адаптаци. Большинство жизненных приспособлений и функций любых видов организмов, так или иначе связаны с питанием.
Полифагия(многоядность) — использование организмом в пищу широкого круга жертв. Полифаги — консументы, рацион которых составляет сравнительно широкий набор жертв. Полифагия обычно связана с определёнными анатомическими, физиологическими и биохимическими адаптациями пищеварительной системы, так, например, набор пищеварительных ферментов у полифагов значительно шире, чем у стенофагов. Биологическое преимущество многоядности в том, что она даёт возможность существовать животным в условиях с неустойчивой кормовой базой, с неустойчивыми запасами отдельных видов кормов. Она обычна в биоценозах с бедным видовым составом (например, тундра, тайга). К полифагам относятся, например, гусеницы лугового мотылька, питающиеся более чем на 200 видах растений; рыжие лесные муравьи поедают представителей сотен видов беспозвоночных и даже некоторые растения. Многоядны лягушки, ящерицы.
Олигофагия — способность животных (олигофагов) питаться исключительно немногими видами пищи. Она свойственна членистоногим — паукам, клещам, ракообразным, наиболее широко распространена среди насекомых. Также явление олигофагии встречается среди червей, моллюсков, рыб, птиц, млекопитающих. Олигофагия наиболее широко распространена среди животных, обитающих в тропических лесах, и относительно редко встречается у животных, обитающих в умеренных широтах. Основные черты малые размеры и малая миграционная способность животных, высокая степень обилия кормового объекта и его длительная и стойкая устойчивость в историческом плане, значительная величина его индивидуальной массы, его систематическая обособленность.
Монофагия — крайняя степень специализации питания у животных за счёт только одного единственного вида пищи, вид стенофагии. Противопоставляется всеядности. Монофагия наблюдается преимущественно в группах с большим числом видов, особенно у насекомых, отдельных видов червей, ракообразных и моллюсков. У позвоночных встречается крайне редко. Больше распространена среди растительноядных видов: например, мелкая форма долгоносика Calandra granaria питается только зёрнами пшеницы, а крупная — кукурузой, гусеницы бабочек рода парнассиус питаются исключительно очитоком. Животные-монофаги в большинстве случаев либо активны в разыскивании предпочитаемой пищи, либо, наоборот, крайне пассивны и питаются малоценной, но легкодоступной для него пищей. Большая панда питается исключительно молодыми побегами нескольких видов бамбука.
ПИТАНИЕ РАСТЕНИЙ - усвоение (ассимиляция) растениями питательных веществ, поступающих из внешней среды; основа обмена веществ. Источниками поступления питательных веществ для растений служит почва, из которой они получают растворённые в воде минеральные (см. Минеральное питание растений) и азотистые вещества, а также углекислый газ воздуха, из которого в процессе фотосинтеза образуют органическое вещество.
Основным способом питания растения является фотосинтез, в процессе которого под действием солнечной энергии происходит восстановление углекислого газа до углеводов (СН20): где А-донор электронов. У зеленых растений (высшие растения, водоросли) донором электронов является вода, поэтому в результате фотосинтеза образуется кислород:
С02+Н20 -> (СН20) + 02.
У бактерий роль донора электронов могут выполнять, например, сероводород, органические вещества. Так, у зеленых и пурпурных серобактерий восстановление диоксида углерода происходит по схеме:
С02+ 2H2S -> (СН20) + 2S + Н20.
При фотосинтезе световая энергия улавливается хлоропластами и преобразуется в итоге в энергию химических связей углеводов; в расчете на 1 грамм-атом поглощенного углерода фиксируется 114 ккал энергии. В процессе фотосинтеза участвуют как фотохимические реакции, так и чисто ферментативные (так называемые темновые) реакции и процессы диффузии, благодаря которым происходит обмен углекислотой и кислородом между растениями и атмосферным воздухом. Каждый из этих процессов находится под влиянием внутренних и внешних факторов и может ограничивать. продуктивность фотосинтеза в целом.
Растительная масса формируется не только за счет продуктов фотосинтеза. Наряду с углеродом, кислородом и водородом она содержит в среднем 2-4% азота (в белковых веществах – 15-19%). Среди биоэлементов азот по количеству в растениях занимает четвертое место. Между усвоением азота растением и продуктивностью существует корреляция; это относится как к отдельному растению, так и ко всему растительному покрову Земли. Прирост растительной массы нередко лимитируется количеством азота. При недостатке азота растения остаются низкорослыми, имеют мелкоклеточные ткани и грубые клеточные стенки.
Кроме светового питания растениям необходимо минеральное питание. Они нуждаются во многих элементах, которые либо поступают из минералов, либо становятся доступными в результате минерализации органического вещества. Все химические элементы поглощаются в форме ионов и включаются в растительную массу, накапливаясь в клеточном соке. После сжигания сухого органического материала минеральные вещества остаются в виде золы. В золе растений могут находиться все химические элементы, встречающиеся в литосфере. Жизненно необходимыми и незаменимыми являются основные элементы минерального питания, которые нужны в больших количествах: натрий, фосфор, сера, калий, кальций, магний, а также микроэлементы — железо, марганец, цинк, медь, молибден, бор и хлор. Кроме того, существуют элементы, которые требуются только для некоторых групп растений: натрий —для маревых, кобальт —для бобовых, алюминий—для папоротников и кремний—для диатомовых водорослей.
Для упорядоченного обмена веществ, хорошей продуктивности и беспрепятственного развития нужно, чтобы растение получало питательные вещества, включая микроэлементы, не только в достаточных количествах, но и в надлежащих соотношениях. Со времен Либиха известно, что урожай зависит от того вещества, которое имеется в недостаточном количестве. Разные виды растений значительно различаются по своим потребностям в питательных веществах. Для культурных растений этот вопрос изучен довольно хорошо. О специфических потребностях дикорастущих видов, напротив, известно немного, хотя именно эти сведения помогли бы лучше понять причины, определяющие характерный видовой состав сообществ.
От наличия достаточного количества пищи зависят все формы их жизнедеятельности. Особенность действия пищи как экологического фактора для животных состоит в том, что экологический смысл имеет только нижний предел выносливости — в случае недостатка пищи она служит важным лимитирующим фактором, тогда как ее избыток не лимитирует развития особей. Как ограничивающий фактор недостаток пищи влияет на плодовитость и скорость развития животных.
У постельного клопа число отложенных яиц определяется количеством выпитой крови. Плодовитость колорадского жука увеличивается в зависимости от числа съеденных листьев. Точно так же развитие животных идет гораздо быстрее при достаточном количестве пищи. У жука-плавунца продолжительность третьей личиночной стадии равна 14 дням, если личинка получает ежедневно по 25 головастиков; если же она получает в день всего по одному головастику, эта стадия длится 51 день.
Необходимое количество корма возрастает с увеличением размеров животного. Однако, поскольку у мелких животных отношение площади поверхности тела к объему довольно велико, для них характерна более высокая интенсивность обмена и соответственно большая потребность в энергии на единицу массы тела, чем для крупных животных. Следовательно, мелким видам на единицу массы требуется больше пищи, чем крупным. Подобным же образом гомойотермные животные, которые должны поддерживать постоянную внутреннюю температуру тела, потребляют пищи больше, чем пойкилотермные.
Устойчивость к голоданию у пойкилотермных и гомойотермных животных различна. У голодающих пойкилотермных животных с повышением температуры среды жизнь укорачивается. Продолжительность жизни гомойотермных животных, подвергаемых голоду, тем больше, чем ближе температура среды к некоторому значению, которое ниже, но близко к температуре тела. Отсутствие пищи лишает птиц возможности поддерживать высокую температуру тела, вследствие чего в зимнее время голодающие птицы нередко погибают. Однако наличие достаточного количества корма позволяет им выдерживать практически любое снижение температуры окружающего воздуха.