Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

reading / British practice / Vol D - 1990 (ocr) ELECTRICAL SYSTEM & EQUIPMENT

.pdf
Скачиваний:
9
Добавлен:
17.07.2023
Размер:
30.18 Mб
Скачать

 

 

Power system performance analysis

 

 

 

Quadrature axis transient reactance

of fault, duration of fault, and any post-fault switching

Quadrature axis subtransient reactance

(e.g., removal of faulted transmission circuits, busbar,

Quadrature axis transient open-circuit time constant

transformer, generator).

Quadrature axis subtransient axis open-circuit time

Three-phase-to-earth faults cause more disturbance

 

constant

than phase-to-phase-to-earth, phase-to-phase, or phase-

Automatic voltage regulator (AVR) data

to-earth faults. For this reason they are the type of

fault specified most often.

Identification of model used

The fault duration may be set in accordance with

Name of ,usbar controlled by AVR

the expected fault clearance time of the faulted equip-

Forward gun

ment — this depends on the operating time of the

Forward time constant

equipment protection plus associated switchgear op-

Feedback gain

erating time, including tolerances, or to a value derived

Feedback time constant

from general design considerations. The shorter the

Maximum regulator voltage limit

fault duration, the less the power system is disturbed.

Minimum regulator voltage limit

In practice, fault clearance time is often a critical factor

Rate of change of regulator voltage (rising/falling)

in determining whether a system remains stable in the

Input filter time constant

post fault period.

Exciter gain

The fault location can be at any point on the system.

Exciter time constant

Usually the locations giving rise to the most severe

Exciter ceiling voltage

disturbances are chosen — this is a matter of experi-

Exciter minimum voltage

ence. If deemed credible, simultaneous fault locations

Regulator amplifier time constant

can be specified, e.g., a double-circuit transmission

Exciter saturation specification

line fault. A fault is simulated by specifying a shunt of

 

 

Governor and turbine data

low impedance to be switched in at, or close to, the

chosen fault location, and to remain connected for the

Speed governor loop regulation

duration of the fault. The low impedance shunt is then

Interceptor loop regulation

switched out.

Maximum turbine power

At the time of removing the fault (low impedance

Speed at which interceptor valve starts to close

shunt), other switching necessary to remove the fault

Constant relating output of high pressure and other

from the network is simulated, i.e., switching out the

 

cylinders

 

faulted circuit.

High pressure throttle valve time constant

The stability study is run until the power system

Interceptor valve time constant

is shown to reach a new state of equilibrium, or to

Reheater time constant

become unstable. In practice, values between one and

High pressure mains loop pipe time constant

five seconds are generally sufficient.

High pressure governor valve upper position limit,

All programs are designed to produce comprehen-

 

upper and lower velocity rates

 

sive data output. This may be in graphical form, or

Interceptor valve upper position limit, upper and

as tabulated data. Usually the change in rotor angles

 

lower velocity rates

 

of the synchronous generators, and busbar voltage

Boiler/turbine pipework resistance coefficient

levels are of prime interest but, within power station

Ratio of reheater to high pressure cylinder inlet

electrical systems, the decrease in induction motor

 

pressure at full load

 

speed is also vitally important. This reduction in motor

 

 

Induction motor data

speed can lead to a situation where the voltage at some

Any specified switching operations

boards remains depressed and motors continue to run

Inertia

down, although the remainder of the system recovers.

Drop-off to pick-up time delay

This is because induction motors, when running at

Lockout time

speeds substantially below normal rating, take a cur-

Data to control program runs

rent well in excess of their full load rating. If several

motors fed from one transformer lose speed at the

Study duration time

same time, the combined increase in current may over-

Study step length

load the transformer and be enough to lower motor

Swing angle limit

terminal voltage, such that the motors are unable to

 

 

draw sufficient power to accelerate back to normal

3.3.3 Use of programs

running speed.

An example of the graphical output of a stability

 

 

System stability following faults

study following a fault is given in Figs 2.97 to 2.99.

The system configuration prior to the fault has been

In preparing a stability study the analyst specifies sys-

shown earlier in Fig 2.64 but, for analysis purposes,

tem configuration prior to the postulated fault, type

the boiler feed pumps are assumed running. This is

183

Electrical system analysis

Chapter 2

 

 

LOAD FLOW RESULTS UUSBAR PU VOLTS 8c LINE MVA LOADING

667

51

 

 

' 000

 

 

7.

761

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s

1W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.1 5A ,

 

 

 

 

 

.1 513

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

097

 

 

 

 

 

30.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

'

 

 

X7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

67

 

 

85A

 

 

 

 

 

 

 

 

058 G

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3'9500

 

 

 

 

0 094

 

 

 

 

 

 

 

 

 

 

 

 

)06

 

 

 

 

 

 

 

 

 

 

 

 

 

We

 

J546

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.1582

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)502

 

 

2 5

J506

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

868

 

 

 

0092

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• XIS

 

 

' 335

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

05

 

 

 

0979

 

 

 

 

 

 

 

 

 

 

 

 

AGE

 

 

 

.I6CE

83

 

 

 

, 023

 

 

 

 

 

.160E

MAE

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

' 070

 

 

 

 

 

: 316

 

 

 

 

 

 

 

 

 

 

 

 

 

 

' Ola

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 2

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

06

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

06

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 7

 

 

 

O2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

2 , 0

36

271

 

 

292

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J2

44

0 3 /5

 

02

 

J7 20

 

 

'

 

 

./9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

122

 

1

 

3210 6

 

I 022' 2

• 122

 

 

 

0 979

 

0 970

3979

 

 

 

0 979

 

 

0 979

 

3579

0 179

0 979

 

 

 

0973

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

96:788

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70 ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

187

 

 

782

 

GP 783 WI

 

 

 

 

 

795

 

787

 

 

788

 

 

 

789 8789,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00

 

0009

0 ,

2

 

 

012

 

 

OW

099

 

7 005

 

 

005

 

 

 

5964 0093

 

 

 

 

 

 

 

• 051

 

 

1

.049

 

 

 

' ISO

1 03

 

 

 

4..

 

 

 

 

32

 

 

 

04 c)

 

 

 

06

0.

06

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E way E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NAY

 

 

 

 

MAX

 

66130

9600

 

 

 

 

8640

 

 

 

WWI

 

 

 

 

 

8900

 

 

 

 

 

 

 

 

 

1

009

 

 

 

 

1 009

 

1 009

 

 

 

 

 

 

 

009

 

 

 

016

 

 

 

 

016

 

 

 

• 313

 

 

 

 

 

' 073

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

0 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

 

 

0

 

 

 

 

L.%

""'"•19

 

 

 

 

 

 

 

 

 

 

0 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O 2

 

 

 

 

 

 

 

 

 

 

 

 

MAY

 

 

213AX

 

 

 

 

 

..1680

 

 

2680

 

 

 

 

 

2637

 

 

 

 

.16C0

 

 

 

 

 

 

.P600

 

 

 

 

 

 

 

60*

 

 

 

 

0 7 •

009

31

 

7 009

 

05

 

009

 

 

 

2€

 

I 009

 

 

 

 

 

07

 

 

0,5

 

1 2

 

' 012

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

02

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

09

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

244

 

 

 

 

 

 

 

 

 

,A3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

op

 

 

 

 

 

'II

,.:08

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ICY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13707' 87007

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

' 11/ 9780

 

 

 

 

137130

 

 

 

 

 

 

 

 

 

 

 

BMX

 

 

 

 

 

 

 

 

 

 

 

706

 

 

 

 

 

 

 

 

 

039 0 2

 

 

 

1 042

 

 

 

 

1 039

 

 

 

 

 

032

1

038

 

 

 

 

 

 

 

 

n12,26

009

 

 

 

 

 

 

027

 

0,

 

1:17Av

2,5

 

 

 

 

 

00

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

29

 

 

 

 

 

 

0 9)

 

 

 

 

 

0 2)

 

 

 

 

 

 

 

 

 

 

 

 

037

 

 

 

 

 

 

 

 

 

 

 

35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 2.97 System configuration for stability analysis following faults

shown in Fig 2.97. A three-phase-to-earth fault having a duration of 0.2 s, applied at 11 kV board B5A, is simulated. To avoid repetition of the study, the fault is assumed to be cleared without the disconnection of any (faulted) plant. This has the effect of making the post-fault results pessimistic, i.e., 'safe'. The voltages of greatest interest in the analysis of a SES are those at the faulted board, at the busbar supplying the faulted board and at the boards fed from the faulted board. The speeds (or slips) of the induction motors fed from these boards are also important. A plot of voltage against time at these boards is shown in Fig 2.98 and a plot of induction motor slip against time is shown in Fig 2.99. For ease of analysis, the fault is applied 0.1 s after the study start, and removed 0.2 s later. The voltage reductions at the time of the fault and subsequent recovery are typical of electrical supply system behaviour. Induction motor speed change is inversely proportional to drive inertia and will vary accordingly.

The tabulated data output for a stability study includes:

Bus bar voltages and phase angles.

Synchronous generator electrical output and mechanical input.

Synchronous generator rotor angle, field current and field voltage.

Induction motor electrical input, mechanical output, slip and losses.

Governor parameters.

AVR parameters.

An example of tabulated data output for the above study is given in Fig 2.100, which gives comprehensive information about the system state at any specified time; in this example, 0.18 s after fault clearance.

Single fed generator systems

In the event of a breakdown in grid supplies, power station auxiliaries are sometimes supplied by a standby generator, usually a gas turbine or diesel-driven alternator. At some magnox type nuclear power stations, the gas circulators are fed by an auxiliary steam turbinegenerator running isolated from the grid system.

Analysis procedures for these single generator systems are similar to the procedures for multi-generator systems. However, load increments, relative to total generator capacity, are often greater on single generator fed systems than on multi-generator systems. Because of this, frequency deviations from nominal values tend to be greater on single generator fed systems. Depending on the frequency variation, it may be desirable to use a stability program which recalculates

184

Power system performance analysis

a

Os

TIME immon0.1

NG. 2.98 Voltage/time relationship at affected switchboard

30a _GILA

114 SLP

 

 

%

250

20 —

BSAY

TIME !seconds)

Eta. 2.99 Induction motor slip

185

Electrical system analysis

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A271? 0,742EA .

 

la

 

TIME

7.4900

 

 

9742417X

02E33:7345 PER .4 71,72 •

1

sTep LE40131

2.0170

 

175/P0IN:

9

 

 

 

 

 

37`;77A2353.3 YACH:NES.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

222A22

 

3115

 

42734

?OLE

 

732C5

 

 

462H.

 

 

 

PCNER 0371237

7E33,

 

2E5M.

 

22,

7

FZELO

 

PCWEA

 

 

 

 

 

6A157

 

0;0_

 

75,7.7a:7E

.27.6

 

017:7

 

 

723E5

 

 

352:6177

32322752

922,735E

2,212E6-7

4C777.4.52.

2332E4:

13573.2

 

 

 

 

 

 

 

 

 

 

3.E-OlEES

Si.?:,

 

 

 

 

 

 

 

 

4.41

YVAR

2.37

 

2.22,

 

2.3.

 

2.3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)2

 

 

 

 

 

 

 

657.747

 

 

662.121

145.319

3.195

 

1.71!

 

2.127

 

2_321

 

1.1540

 

 

 

 

 

23734.52_

 

 

415

-5,7722775

 

 

 

 

-525.545

 

 

-52'.773

-759:494

2,333

 

5.4)2

 

2,164

 

0.594

 

-.1565

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

171

 

 

 

:I

7- -77

 

7742:1E:E9

 

FEEa31.29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.7174

 

 

 

:.

745

 

4

=1L

 

 

1:30:37.

 

 

60374:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.345

 

 

3.550

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

 

 

 

 

 

 

411

 

 

3.393

 

 

7.737

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

77E94AL

71:7377:E.

37:3477.0351

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33532A

 

55.

 

 

17.

332,2,

 

 

20311232,

5102214

CO3771202,

 

7.9.7.617.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1:2421

 

 

 

57233L

 

 

 

5:343L5

 

44:0

SE 77:NG

 

0501

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13721

 

 

CI

 

 

 

Cl

 

 

51

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

 

 

 

 

0.0:03

 

 

-.257

 

 

-.869

 

 

560.3.30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-4,977

 

 

-5.291

 

-529.189

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

:403.2210A

43-727

%22.3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

335333

 

33. 1

 

 

772733

4035A

 

254E9

791ST

 

 

 

26924.

1%74.

21RWE

IMO)

POWER

 

 

 

 

 

 

 

 

 

 

 

NAmE

 

ND

 

 

3_:?

 

AcT!vE

7E551:3 E

vOL7AGE

059.3E92

 

 

 

4017051

FACTOR

 

 

 

 

 

 

 

 

 

 

353

 

3

 

5_7130

494

 

 

494

 

58IAR

 

P.D.

2. 7.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.500

1.

 

64

72,715

 

3.936

0.555

4.7404

 

 

915143

0.5671

 

 

 

 

 

 

 

 

 

 

312

 

21

 

5.1639

4.600

a

761

12.715

 

3.116

0.155

4.7404

 

 

615143

1.567!

 

 

 

 

 

 

 

 

 

 

359

 

1

 

2.9475

5

610

5,954

4,311

 

2,146

0.131

5.6644

 

 

5-4102

0.8053

 

 

 

 

 

 

 

 

 

 

353

 

1

 

3.0575

5.4:1

5.904

4.310

 

0.440

0.247

5.6644

 

 

5-8102

0,9353

 

 

 

 

 

 

 

 

 

 

355

 

 

 

.9446

5.638

5.710

3.535

 

1.999

0.067

5.6965

 

 

5,6962

0.5501

 

 

 

 

 

 

 

 

 

 

asc

 

5

 

7.1440

5.639

5.'10

3.535

 

0.199

0.167

5.6665

 

 

5,4962

0.1511

 

 

 

 

 

 

 

 

 

 

5-59

 

3

 

7.6445

5.619

3.726

3.534

 

0.399

1.064

5.6165

 

 

5.6920

015510

 

 

 

 

 

 

 

 

 

 

355

 

 

2,3445

5.619

5.126

3.534

 

0,114

0.067

5.6965

 

 

5.6920

0.8550

 

 

 

 

 

 

 

 

 

 

143/

 

3

 

1.1960

1.041

1.161

1.346

 

1.122

0.005

0.0983

 

 

0.1453

0.4201

 

 

 

 

 

 

 

 

 

 

351

 

1

 

 

.2465

1.410

1.545

1.590

 

0.146

0.023

1.5173

 

 

1.5150

0.6993

 

 

 

 

 

 

 

 

 

 

357

 

5

 

1.0814

1.511

!..5416

1.532

 

0.999

0.022

1.5254

 

 

1.5238

315107

 

 

 

 

 

 

 

 

 

 

353

 

3

 

5.6154

7.717

14.821

15.31.9

 

01586

0.211

1.1656

 

14.0166

015116

 

 

 

 

 

 

 

 

 

 

35,2

 

1

 

1.1141

9.763

9.466

4.255

 

0.399

1.118

1.11915

 

 

3.9049

0.3191

 

 

 

 

 

 

 

 

 

 

1451

 

2

1.15.2

 

0

0.200

1.000

0.000

 

0.000

1.301

0.300

 

 

0.0000

0.0000

 

 

 

 

 

 

 

 

 

 

1733

 

2

 

4.1395

0.342

0.686

2.229

 

0.140

3.117

2,3193

 

 

0.5996

0.5199

 

 

 

 

 

 

 

 

 

 

3731

 

E

 

1.5567

0.240

0.256

0.127

 

0.350

0.003

0.2417

 

 

0.2499

0.8954

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3732

 

E

 

1.5246

0.507

 

3.541

0.270

 

0.397

0.006

0.5144

 

0.5285

0.8951

 

 

 

 

 

 

 

 

 

353

 

3

 

-1618

0.424

0.355

0.212

 

0.929

0.706

0.4334

 

0.4493

0.9496

 

 

 

 

 

 

 

 

 

363

 

A

 

1.3565

0.301

 

0.323

0.205

 

0.121

0.004

0.3050

 

0.3166

0.9450

 

 

 

 

 

 

 

 

 

360

 

c

 

0.6279

1.521

 

1.550

0.969

 

1.016

0.011

1.5311

 

 

1.5115

0.8432

 

 

 

 

 

 

 

 

 

362

 

A

 

0.3657

3.136

 

0.203

0.177

 

1.216

0.003

3.1998

 

0.2001

0.7536

 

 

 

 

 

 

 

 

 

365

 

4

 

1.1742

0.172

 

0.179

0.105

 

1.016

0.002

0.1745

 

0.1749

0.19629

 

 

 

 

 

 

 

 

 

3)4

 

 

E

 

73.5207

0.232

 

0.479

0.925

 

 

 

 

 

 

 

 

 

 

 

3

7

33

 

6

 

1.6129

0.199

 

0.201

0.103

 

0.720

0.014

1.2678

 

0.4042

0.4612

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.959

0.002

0.1920

 

0.1375

0.8914

 

 

 

 

 

 

 

 

 

3724

 

F.

 

1.6921

0.321

 

3.367

0.177

 

0.956

0.004

0.1286

 

0.1391

0.9916

 

 

 

 

 

 

 

 

 

3738

 

E

 

1.7241

1.489

 

0.524

0.269

 

0.351

0.006

0.4)61

 

0.5106

2.11896

 

 

 

 

 

 

 

 

 

3731

 

E

 

1.0116

0.955

 

1.029

0.549

 

9.925

0.013

0.9724

 

1.0006

0,8827

 

 

 

 

 

 

 

 

 

5736

 

E

 

1.6385

0.539

 

0.428

01519

 

0.954

1.305

0,4059

 

0.4176

0.1505

 

 

 

 

 

 

 

 

 

1631

 

D

101.0000

0.200

 

0.000

1.000

 

0.000

0.000

0.3000

 

2.0000

2,0033

 

 

 

 

 

 

 

 

 

43

 

 

2

 

2,73,55

0.150

 

0,162

0.083

 

0.352

0.002

0.1527

 

0.1576

0.8898

 

 

 

 

 

 

 

 

 

 

 

3)31.2333

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5125131

 

vULTAGE

 

 

31025

 

 

 

300533

VOLTAGE

 

ANGLE

 

 

3112530

302.735E

 

ANGLE

 

8085624

102715E

ANGLE

 

 

 

 

 

31

 

0.381

 

 

-2,17

 

 

 

39

 

 

 

0.392

 

-2.52

 

 

2581

3.949

 

-5.53

 

J5211

 

9.839

-8.24

 

 

 

 

 

31

 

0.993

 

 

-,14

 

 

 

358

 

 

 

0.946

 

-5.55

 

 

856

0.836

 

-6.27

 

34

 

3.994

155

 

 

 

 

 

350

 

7.493

 

 

4,56

 

 

 

852

 

 

 

0.999

 

 

3.92

 

 

2551

1.001

 

 

1.99

 

3521

 

1.121

4.60

 

 

 

 

 

2552

 

0.944

 

 

-5.51

 

 

 

2522

 

 

0.939

 

 

4.55

 

 

363x

0.822

 

-9.20

 

3735

 

0.190 -11.26

 

 

 

 

 

3687

 

0.822

 

 

-9,11

 

 

 

5737

 

 

0.100

-10.96

 

 

106

0.962

 

-6.10

 

3425

 

1.109

3.26

 

 

 

 

 

36795

 

1.307

 

 

8,69

 

 

 

3637

 

 

1.106

 

 

3.68

 

 

5625

1.009

 

 

3.26

 

3637

 

0.962

-6.10

 

 

 

 

 

 

3'2Y

 

1.390

 

 

-7.15

 

 

 

3135

 

 

0.997

 

-7.41

 

 

3722

1.011

 

 

1,96

 

9727

 

1.326

1.11

 

 

 

 

 

3797

 

1.020

 

 

1.19

 

 

 

5151

 

 

0.951

 

-9.44

 

 

3732

0.949

 

-9,55

 

8793

 

0.353

-3.11

 

 

 

 

 

3724

 

0.956

 

 

-9.36

 

 

 

3705

 

 

0.958

 

-9.97

 

 

3736

0.954

 

-9.57

 

21

 

0.921

-1.41

 

 

 

 

 

22

 

0.929

 

 

-9.41

 

 

 

31

 

 

 

3.929

 

-1.41

 

 

15

0.929

 

-4.41

 

25

 

0.821

-0.40

 

 

 

 

 

35

 

3.929

 

 

-8.41

 

 

 

369.E

 

 

0.523

 

-4.20

 

 

sm

5.942

 

-6.01

 

266E

 

1.710

3.27

 

 

 

 

 

:537

 

0,921

 

 

-4.19

 

 

 

2612

 

 

0.621

 

-9.19

 

 

s607

0.162

 

-4.10

 

2605

 

0.362

-6.12

 

 

 

 

 

 

36C9

 

1.009

 

 

3.26

 

 

 

262x

 

 

1.909

 

 

3.26

 

 

2607

1.006

 

 

1.69

 

2600

 

1.006

3.68

 

 

 

 

 

159 -.

 

0,995

 

 

7.55

 

 

 

J5CE

 

 

0.399

 

 

3.92

 

 

JSAE

0,936

 

-9.27

 

250E

 

0.948

-5.55

 

 

 

 

 

30111

 

0.999

 

 

4.56

 

 

 

2600

 

 

1.007

 

 

3,30

 

 

3737

2,953

 

-9.16

 

3780

 

0.950

-9.00

 

 

 

 

 

3733

 

3,325

 

-11.39

 

 

 

37391

 

 

0.925

-11.29

 

 

1704

1.024

 

 

3.87

 

273

 

0.016

2.76

 

 

 

 

 

3151

 

1.043

 

 

1.e5

 

 

 

152

 

 

 

1.016

 

 

2.76

 

 

9732

1.142

 

 

1.95

 

J11

 

1.016

2.76

 

 

 

 

 

17211

 

1.050

 

 

2.34

 

 

 

210

 

 

 

1.016

 

 

2.76

 

 

365

1.116

 

 

2.16

 

177Y1

 

1.100

1.56

 

 

 

 

 

3

10

 

7.321

 

 

2.10

 

 

 

J4

 

 

 

0.929

 

-0.47

 

 

36

0.929

 

-0.41

 

29

 

0.923

-6.50

 

 

 

 

 

363

 

3.924

 

 

-0.40

 

 

 

44

 

 

 

0.721

 

-7.56

 

 

93

3.952

 

-7.84

 

 

 

 

 

 

 

 

 

 

3 3321AL 5-77.2 2E3524

1 420E22E2

:0

2,02000

S.

A: 82E2

FROM

TIME

0.4830

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)

FIG. 2.100 Example of data output for a stability study

186

WI'

Power system performance analysis

system component parameters which are Ire-

these

quency dependent.

Examples of the output from a dynamic stability study of an isolated system are shown in Fig 2.101.

The system modelled has been shown earlier in Fig 2.65; it represents a single steam generator supplying six gas circulators. The postulated fault is a three-phase- to-earth fault at the cable box (J2) of one of the

MOTOR LOADING OF 2.9MW - 0./25S FAULT

7-1

1 4

0 6-

1 005 -

0 4-

1 000

0 3 4

- GENERATOR TERMINAL VOLTAGE (P.U.) GENERATOR TERMINAL CURRENT (P.U. ON RATING)

GENERATOR REAL AND REACTIVE TERMINAL POWER (P.U. ON RATING) GENERATOR FREQUENCY (P.U.)

0 10 -

6-

14 -

5-

12"

0 05

10-

4-

8-

0 00 3

s -

2-

4-

0 05-

2-

OJ -0 10- 0- 0 0

0

MOTOR LOADING OF 2.9MW - 0.125S FAULT

REACTIVE TERMINAL POWER

REAL TERMINAL POWER

TIME.s

MOTOR 5 TERMINAL VOLTS (P U.)

MOTOR 5 TERMINAL CURRENT (P.U. ON RATING)

MOTOR 5 REAL AND REACTIVE TERMINAL POWER (P.U. ON 100MVA)

MOTOR 5 SLIP (%)

FIG. 2.101 Example of the output from a dynamic stability study on an isolated system

187

Electrical system analysis

 

 

 

 

 

 

Chapter 2

 

 

 

 

 

 

 

 

gas

circulators. It is, for analysis purposes, assumed

 

cuit between GC.BD and J2, 0.125 s after the appli-

to be of 0.125 s duration and is cleared by opening the

 

cation of the fault.

 

 

 

 

associated circuit-breaker at the main board (GC.BD).

 

Figure 2.102 is included here to demonstrate the

This

is simulated in the analysis by removing the cir-

 

unacceptable effects of slow fault clearance, in this

 

 

"225 1

 

6-

 

2

 

MOTOR LOADING OF 2 9mw - 0 1255 FAULT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 020 -1

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 -

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

015 -

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 8 -

-

 

0 8

 

 

 

 

 

 

 

 

 

 

 

1

1 -

 

 

 

 

 

 

 

 

 

REACTIVE TERMINAL POWER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 6-

3 -

 

0.6

 

 

 

 

 

 

 

 

 

 

 

1 005-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REAL TERMINAL POWER

 

1 000 -

0 4-

2-

 

04

 

 

 

 

 

 

 

 

 

 

 

0 995 -

0 2-

1-

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.990 -

0 -

0

 

0.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

4

5

 

 

 

 

 

 

0

1

2

TIME.s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

— GENERATOR TERMINAL VOLTAGE (P U.)

GENERATOR TERMINAL CURRENT (P.U. ON RATING)

GENERATOR REAL AND REACTIVE TERMINAL POWER (P.U. ON RATING)

— GENERATOR FREQUENCY (P.U.)

 

 

 

 

 

 

 

 

 

 

 

 

0 10-

6-

 

 

 

 

 

 

1

4

 

 

 

 

 

 

 

 

 

 

 

 

1

2

 

 

 

 

12

 

5-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 05-

 

1

0

 

 

 

 

1 0

 

4-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

0 8 -

 

 

 

0 00-

 

 

 

 

 

 

 

 

 

3-

 

 

 

 

 

 

 

6

 

 

0 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2-

 

 

 

 

 

 

 

4

0 05-

 

0 4-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

1-

0.2

 

 

---

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o -

0 10 -

0-

0 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MOTOR LOADING OF 2.9MW 0.18S FAULT

PEAL TERMINAL POWER

REACTIVE TERMINAL POWER

 

 

3

 

 

 

 

5

TIME.s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MOTOR 5 TERMINAL VOLTS (P.U.)

MOTOR 5 TERMINAL CURRENT (P U. ON RATING)

MOTOR 5 REAL AND REACTIVE TERMINAL POWER (P U. ON 100M VA)

MOTOR 5 SLIP (%)

Flo. 2.102 Unacceptable effects of slow fault clearance

188

Power system performance analysis

example on a single generator system. The postulated fault is similar to that shown in Fig 2.101, except that its duration is increased from 0.125 s to 0.18 s, and we have an example where this power system has become unstable. Voltage remains depressed in the post-fault period and the remaining induction motors are unable to accelerate to their normal speed. In practice, the system condition simulated here would not occur -,ecause electrical protection is provided to disconnect •he generator in the event of sustained generator overload or sustained system voltage depression.

Afotor run - up

The time taken by an induction motor to run-up from standstill to normal running speed can be calculated using transient stability analysis programs. This run-up ti me can be important; for example, when a boiler feed pump fails and the water input to the boiler becomes insufficient to match the boiler steam output. Generating output will need to be reduced unless a standby pump can be substituted quickly for the failed pump to deliver adequate water supplies to the boiler.

To simulate induction motor performance over its whole speed range, it is necessary to provide motor resistance and reactance values, both at the normal motor running speed and when the motor is at standstill. These values are not the same. It is also necessary to specify how the mechanical load on the motor varies while the motor is running up; for example, the mechanical load may be assumed to be constant, or to be proportional to the motor speed. Other functions relating motor speed with mechanical load can be defined, as required.

The motor start and run-up is simulated by simply specifying one switching operation during the transient stability study, that of switching in the motor. An example from a direct-on-line motor start and runup study is given in Figs 2.103 (a) to (d). Referring to Fig 2.54, one of the boiler feed pump motors connected to 11 kV SB1 is assumed to be shutdown and is redesignated as motor A. One change in tap position on the station transformer is necessary to reduce the 11 kV station board voltage to 1.014 perunit. The resulting system condition is shown in Fig 2.103 (a).

The results of most interest to the analyst are:

The run-up time of the motor.

The effect of the motor on the system, especially by how much board voltages are reduced.

The effects of these voltage reductions on other motors.

The recovery time of voltages at all system levels.

The results of the motor run-up study are shown in graphical form in Figs 2.103 (b) and (c). Figure 2.103

(b) shows the voltages at boards which are electrically close to the motor being started and Fig 2.103 (c) shows the motor run-up curve (slip against time) and the slips of other motors which may be affected by the reduced voltage. The figures show this particular motor running up to speed in 10 s and that the other motors are able to continue supplying their mechanical loads while voltages are depressed during the motor run-up periods. It should be remembered that motor run-up times are strongly influenced by the voltage at the motor terminals during run-up. The voltage curves are those expected; after the initial fall in voltage there is a gradual slight recovery as the motor gains speed and takes less reactive power. Finally, there is a sharp rise in voltage as the motor passes its peak torque, and watt and VAr input reduce simultaneously. These results would be considered satisfactory, because voltages remain within design limits and the motor run-up time is acceptable.

Detailed system performance data are available throughout the study period. An example is given in Fig 2.103 (d), at 2 s after the motor start. It shows that motor A at 11 kV SB1 has a slip of 60.99% and a power input of 4.33 MW and 33.55 MVAr, with a terminal voltage of 0.843 per-unit at this instant.

3.4 Future developments of electrical analysis programs

Further developments of the electrical analysis programs that are currently in hand include the following:

Harmonic analysis of a power system.

Modelling of converter equipment as part of a user defined modelling facility.

Transient recovery voltages.

189

Electrical system analysiS

Chapter 2

 

LOAD FLOW RESULTS. BUSBAR PU VOLTS & LINE MV OADING

JEISI

 

 

025

7

025

05

1 00

09S

0.30

085

080

175

0 70

00S

.32%6 I 002

isto

1 3607

Ove

1 026

 

 

 

 

 

 

 

 

 

 

 

 

 

•@,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0TSI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SSIA

 

 

 

001.1

 

WW

 

 

 

 

 

 

VAIN

¶5

 

 

FOS

028

 

021

 

 

 

 

1 007

1 02$

 

016

 

 

 

 

 

 

1 022

ON

1 035

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

02

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 035

 

 

 

 

 

 

 

 

 

 

 

 

 

0-2

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIVWS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

easi

1160

 

 

 

 

20 Try

 

 

 

 

 

 

1

01.2

 

7 027

 

 

 

 

 

 

 

 

 

 

 

 

1.02?

1.009

1 017

 

1 025

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)

0

 

1 0.9

 

(b)

Fic. 2.103 Example of motor start and run-up study

190

Power system performance analysis

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3)0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

501

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

"0 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

610

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

500

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i1.9581

 

 

 

 

 

 

 

 

 

.0 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 .,. .GSBI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

-

 

 

 

 

 

SO 1581

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4'3338:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.00

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

---

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

:00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.7 7 ?

 

scm.RFR

122

7134E •

2.1200

 

mAXIKUM

ITERATIONS 7E0 57E0 •

1

 

STEP LENGTH

-

3.0200

:78120I5T •

21

 

 

 

611303410010 M3CRINE5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31530R

 

M/C

ACTOR

POLE

 

510100

 

MECH.

 

00240?

1131020

 

TEAM.

 

TERM.

 

FIRE 0

FIELD

?CHER

 

 

 

 

NAME

50.

ANGLE

005

 

SLIP

 

?CHER

 

ACTIVE

REACTIVE

VOLTAGE

CURRENT

VOLTA 3E

CURRENT

FACTOR

 

 

 

 

 

 

 

 

 

DEGRESS

0100

 

V.U.

 

RN

 

5114

WAR

2.0.

 

 

2.1.

 

0.U,

2.U.

 

 

 

 

 

41193

 

 

 

-6.10.

0

-.7000

-573.441

 

-574.530

-49.618

0.191

 

5.119

 

0.906

0.988

-.1963

 

 

 

20+37

 

13

 

63.17

3

-.0100

 

661.247

 

660.433

260.042

0.991

 

7.161

 

2.620

2.626

0.9305

 

 

 

,I•v191

1

 

3.20

o

0.3033

 

0.000

 

0.330

0.310

3.303

 

0.035

 

3.323

3.030

0.0000

 

 

 

:51:137,00 00703 1030

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0153A3

437

00700

mEcH.

 

POWER INPUT

 

 

7E1.04.

TERM.

 

TDROCE

(1437

204E3

 

 

 

 

 

 

 

NA:C-..

ND

SLIP

PUER

ACTIVE

REACT!? Z

0007543E

CURAENT

LOAD

 

 

MOTOR

FACTOR

 

 

 

 

 

 

 

 

 

 

 

 

2.0.

mw

 

 

MW

WAR

 

 

P.U.

0. 2.

 

 

 

 

 

 

 

 

 

 

 

 

 

:101/02:

 

F

1.1514

2.540

2.633

1.461

 

0.999

0.330

2.6185

 

 

2.0316

0.9742

 

 

 

 

 

 

 

1)- .3

 

F

1.1504

 

 

 

 

 

 

 

 

 

:1 , .., 3

 

I

1.1335

2.588

2.633

1.463

 

0.991

0-010

2,6185

 

 

2.6116

0.0742

 

 

 

 

 

 

 

13.13

2

1.1105

2.918

3.015

1.767

 

0.999

0-015

3.0093

 

 

2.3041

0.9621

 

 

 

 

 

 

 

 

 

 

7

2,919

3.015

1.767

 

0.999

0-015

3.0093

 

 

2.9941

1.0627

 

 

 

 

 

 

:10773

:.1030

2.908

2.359

1./67

 

0.999

1.035

2.9401

 

 

2.1410

1.9560

 

 

 

 

 

 

 

A

63.3954

-.104

4.326

33.548

 

0.047

0.471.

-.2657

 

 

3.8511

0.1274

 

 

 

 

 

 

,

103321

3

:.2687

 

 

 

3.9064

 

 

 

 

 

 

 

9.805

10.066

5.531

 

0.043

0.136

10.0119

 

10.0123

 

 

 

 

 

 

3.3131

0

1.0429

0.991

1.032

0.830

 

1-316

0.313

1.0099

 

 

1.0102

0.2793

 

 

 

 

 

 

1.11131

 

0100,3215

0.000

0.110

0.000

 

3.000

0.310

0.0000

 

 

0.0000

0L3503

 

 

 

 

 

 

3

31102

 

 

 

1.7664

 

3.0218

 

 

 

 

 

 

 

 

 

 

1,1531

 

1

2.999

3.081

3.330

 

1.006

0.343

 

 

3.1237

0.1123

 

 

 

 

 

 

 

1

0,1574

1.263

1.115

0.791

 

7.037

0.018

1.2476

 

 

1.2917

0.0592

 

 

 

 

 

 

3

2311

 

 

 

2.1301

 

 

 

 

 

 

 

 

 

3.3737

 

 

A

0.195

3.205

0.111

 

1.811

3.003

3.1496

 

 

1.1996

0.4806

 

 

 

 

 

 

 

2

:10.3100

0.001

0.000

1.113

 

0.100

0.300

3.0000

 

 

0.2000

0.7040

 

 

 

 

 

 

3.1501

 

 

E

1.6974

3.531

3.527

0.202

 

0.144

0.007

0.5491

 

 

3.5209

0.8015

 

 

 

 

 

 

3.123,

 

0

0.3941

1.073

1.960

0,909

 

0.944

0.325

1.0401

 

 

1-1402

1.9829

 

 

 

 

 

 

170003

3017.1475

 

 

 

 

 

 

 

.

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

301333

 

04:753E

ANGLE

 

320050

VOLTAGE

 

HUSSAR

VOLTAGE

 

ANGLE

905050 vOLTAGE

ANGLE

 

 

 

 

 

 

ANGLE

 

 

 

 

 

 

401E0

1.391

-.58

 

13200

 

0.958

-3.59

111.0391

0.999

 

 

2.71

 

9933553

0.543

-7.42

 

 

 

 

3.1091

1.106

0.51

 

3.3551

3.837

-11.39

3.1E01

0.844

 

-10.95

 

FOS

0.052

-11.51

 

 

 

 

75

 

 

0.846

-11.92

 

CRPH

 

0.042

-12.02

MX

0.846

 

-11.74

 

ATP

0.837

-12.44

 

 

 

 

17i

 

0.147

-11,76

 

0-8

 

0.841

-12.17

5511.

0.641

 

-12.24

 

7131

1.311

3,09

 

 

 

 

2005

 

 

 

 

 

 

 

 

 

 

 

520

 

 

3.045

-11.93

 

7231

 

1.015

 

-.04

231010

0.901

 

 

7.10

 

MO

0.934

-12.13

 

 

 

 

 

 

 

3.923

-12.63

 

5051

 

0-846

-11.75

HYD

0.831

 

-12.20

 

CHL

0.838

-12.37

 

 

 

 

 

 

 

0.052

-11.37

 

JETTY

 

0.843

-11.44

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 2.103 (cont'd) Example of motor start and run-up study

191

Electrical system analysis

Chapter 2

 

 

4 References

IAllan, R. N. and Avouris, N. M.: Users Manual for GRASP2 (Graphic/Interactive Reliability of Electrical Auxiliary Systems of Power Stations): University of Manchester Institute of Science and Technology: April 1983

[ 2 1 Allan, R. N. and Billington, R.: Reliability Evaluation of Engineering Systems: Pitmans: 1987

Avouris, N. NI.: Interactive Reliability Analysis of Electrical Auxiliary Systems (PhD Thesis): University of Manchester Institute of Science and Technology: January 1983

14] Stott, B.: Power System Load Flow (MSc Lecture notes): University of Manchester Instittue of Science and Technology: 1973

[5]BrameIler, A.: Analysis of Linear Network Systems (MSc Lecture notes): University of Manchester Institute of Science and Technology: 1973

[6]Stagg and El-Abiad: Computer Methods in Power System

Analysis: McGraw-Hill: 1971

Ralston: A First Course in Numerical Analysis: McGraw-Hill: 1979

Pettofrezzo: Matrices and Transformations: Prentice Hall: 1966 (out of print)

Arrillaga, Arnold and Harker,: Computer Modelling of Electrical Power Systems: John Wiley: 1983

Wagner and Evans: Symmetrical Components: McGraw-Hili: 1933 (out of print)

Charles Concordia: Synchronous Machines: John Wiley: (out of print)

Stevenson: Elements of Power System Analysis: McGraw-Hill: 1982 (out of print)

IEEE Report on Computer Representation of Excitation Systems Paper 31TP 67-424: IEEE Summer Power Meeting: Portland, Oregon July 9-14, 1967

192