
reading / British practice / Vol D - 1990 (ocr) ELECTRICAL SYSTEM & EQUIPMENT
.pdf
|
|
Power system performance analysis |
|
|
|
|
|
Quadrature axis transient reactance |
of fault, duration of fault, and any post-fault switching |
||
Quadrature axis subtransient reactance |
(e.g., removal of faulted transmission circuits, busbar, |
||
Quadrature axis transient open-circuit time constant |
transformer, generator). |
||
Quadrature axis subtransient axis open-circuit time |
Three-phase-to-earth faults cause more disturbance |
||
|
constant |
than phase-to-phase-to-earth, phase-to-phase, or phase- |
|
Automatic voltage regulator (AVR) data |
to-earth faults. For this reason they are the type of |
||
fault specified most often. |
|||
Identification of model used |
The fault duration may be set in accordance with |
||
Name of ,usbar controlled by AVR |
the expected fault clearance time of the faulted equip- |
||
Forward gun |
ment — this depends on the operating time of the |
||
Forward time constant |
equipment protection plus associated switchgear op- |
||
Feedback gain |
erating time, including tolerances, or to a value derived |
||
Feedback time constant |
from general design considerations. The shorter the |
||
Maximum regulator voltage limit |
fault duration, the less the power system is disturbed. |
||
Minimum regulator voltage limit |
In practice, fault clearance time is often a critical factor |
||
Rate of change of regulator voltage (rising/falling) |
|||
in determining whether a system remains stable in the |
|||
Input filter time constant |
|||
post fault period. |
|||
Exciter gain |
The fault location can be at any point on the system. |
||
Exciter time constant |
Usually the locations giving rise to the most severe |
||
Exciter ceiling voltage |
disturbances are chosen — this is a matter of experi- |
||
Exciter minimum voltage |
ence. If deemed credible, simultaneous fault locations |
||
Regulator amplifier time constant |
|||
can be specified, e.g., a double-circuit transmission |
|||
Exciter saturation specification |
|||
line fault. A fault is simulated by specifying a shunt of |
|||
|
|
||
Governor and turbine data |
low impedance to be switched in at, or close to, the |
||
chosen fault location, and to remain connected for the |
|||
Speed governor loop regulation |
|||
duration of the fault. The low impedance shunt is then |
|||
Interceptor loop regulation |
|||
switched out. |
|||
Maximum turbine power |
|||
At the time of removing the fault (low impedance |
|||
Speed at which interceptor valve starts to close |
|||
shunt), other switching necessary to remove the fault |
|||
Constant relating output of high pressure and other |
|||
from the network is simulated, i.e., switching out the |
|||
|
cylinders |
||
|
faulted circuit. |
||
High pressure throttle valve time constant |
|||
The stability study is run until the power system |
|||
Interceptor valve time constant |
|||
is shown to reach a new state of equilibrium, or to |
|||
Reheater time constant |
|||
become unstable. In practice, values between one and |
|||
High pressure mains loop pipe time constant |
|||
five seconds are generally sufficient. |
|||
High pressure governor valve upper position limit, |
|||
All programs are designed to produce comprehen- |
|||
|
upper and lower velocity rates |
||
|
sive data output. This may be in graphical form, or |
||
Interceptor valve upper position limit, upper and |
|||
as tabulated data. Usually the change in rotor angles |
|||
|
lower velocity rates |
||
|
of the synchronous generators, and busbar voltage |
||
Boiler/turbine pipework resistance coefficient |
|||
levels are of prime interest but, within power station |
|||
Ratio of reheater to high pressure cylinder inlet |
|||
electrical systems, the decrease in induction motor |
|||
|
pressure at full load |
||
|
speed is also vitally important. This reduction in motor |
||
|
|
||
Induction motor data |
speed can lead to a situation where the voltage at some |
||
Any specified switching operations |
boards remains depressed and motors continue to run |
||
Inertia |
down, although the remainder of the system recovers. |
||
Drop-off to pick-up time delay |
This is because induction motors, when running at |
||
Lockout time |
speeds substantially below normal rating, take a cur- |
||
Data to control program runs |
rent well in excess of their full load rating. If several |
||
motors fed from one transformer lose speed at the |
|||
Study duration time |
same time, the combined increase in current may over- |
||
Study step length |
load the transformer and be enough to lower motor |
||
Swing angle limit |
terminal voltage, such that the motors are unable to |
||
|
|
draw sufficient power to accelerate back to normal |
|
3.3.3 Use of programs |
running speed. |
||
An example of the graphical output of a stability |
|||
|
|
||
System stability following faults |
study following a fault is given in Figs 2.97 to 2.99. |
||
The system configuration prior to the fault has been |
|||
In preparing a stability study the analyst specifies sys- |
|||
shown earlier in Fig 2.64 but, for analysis purposes, |
|||
tem configuration prior to the postulated fault, type |
the boiler feed pumps are assumed running. This is |
183

Electrical system analysis |
Chapter 2 |
|
|
LOAD FLOW RESULTS UUSBAR PU VOLTS 8c LINE MVA LOADING
667 |
51 |
|
|
' 000 |
|
|
7. |
761 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s |
1W |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.1 5A , |
|
|
|
|
|
.1 513 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
097 |
|
|
|
|
|
30. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
' |
|
|
X7 |
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
|
85A |
|
|
|
|
|
|
|
|
058 G |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
e |
|
|
8 |
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3'9500 |
|
|
|
|
0 094 |
|
|
|
|
|
|
|
|
|
|
|
|
)06 |
|
|
|
|
|
|
|
|
|
|
|
|
|
We |
|
||||||||
J546 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.1582 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)502 |
|
|
2 5 |
J506 |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
• |
|
|
|
|
|
|
868 |
|
|
|
0092 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
• XIS |
|
|
' 335 |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
05 |
|
|
|
0979 |
|
|
|
|
|
|
|
|
|
|
|
|
AGE |
|
|
|
.I6CE |
83 |
|
|
|
, 023 |
|
|
|
|
|
.160E |
|||||||||||||||||||
MAE |
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
' 070 |
|
|
|
|
|
: 316 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
' Ola |
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 2 |
|
|
|
|
|
|
|
2 |
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
06 |
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
06 |
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
0 7 |
|
|
|
O2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
2 , 0 |
36 |
271 |
|
|
292 |
|
|
I |
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
J2 |
44 |
0 3 /5 |
|
02 |
|
J7 20 |
|
|
' |
|
|
./9 |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
1 |
|
3210 6 |
|
I 022' 2 |
• 122 |
|
||||||||||||||||||||||||||||||||||||
|
|
0 979 |
|
0 970 |
3979 |
|
|
|
0 979 |
|
|
0 979 |
|
3579 |
0 179 |
0 979 |
|
|
|
0973 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96:788 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 , |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
187 |
|
|
782 |
|
GP 783 WI |
|
|
|
|
|
795 |
|
787 |
|
|
788 |
|
|
|
789 8789, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
00 |
|
0009 |
0 , |
2 |
|
|
012 |
|
|
OW |
099 |
|
7 005 |
|
|
005 |
|
|
|
5964 0093 |
|
|
|
|
|
|
|
• 051 |
|
|
1 |
.049 |
|
|
|
' ISO |
1 03 |
|
|||||||||||||||||||||||||
|
|
4.. |
|
|
|
|
32 |
|
|
|
04 c) |
|
|
|
06 |
0. |
06 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
E way E |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
NAY |
|
|
|
|
MAX |
|
66130 |
9600 |
|
|
|
|
8640 |
|
|
|
WWI |
|
|
|
|
|
8900 |
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||
|
1 |
009 |
|
|
|
|
1 009 |
|
1 009 |
|
|
|
|
|
|
|
009 |
|
|
|
016 |
|
|
|
|
016 |
|
|
|
• 313 |
|
|
|
|
|
' 073 |
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
• |
0 |
|
|
0 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
0 |
|
|
|
|
L.% |
""'"•19 |
|
|
|
|
|
|
|
|
|
|
|||||||||||||
0 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O 2 |
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
MAY |
|
|
213AX |
|
|
|
|
|
..1680 |
|
|
2680 |
|
|
|
|
|
2637 |
|
|
|
|
.16C0 |
|
|
|
|
|
|
.P600 |
|
|
|
|
|
|
|
60* |
|
|
|
|
||||||||||||||||||||||
0 7 • |
009 |
31 |
|
7 009 |
|
05 |
|
009 |
|
|
|
2€ |
|
I 009 |
|
|
|
|
|
07 |
|
|
0,5 |
|
1 2 |
|
' 012 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||
|
|
|
|
|
|
|
|
02 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
09 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
244 |
|
|
|
|
|
|
|
|
|
,A3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
op |
|
|
|
|
|
'II |
,.:08 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ICY |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13707' 87007 |
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
' 11/ 9780 |
|
|
|
|
137130 |
|
|
|
|
|
|
|
|
|
|
|
BMX |
|
|
|
|
|
|
|
|
|
|
|
706 |
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
039 0 2 |
|
|
|
1 042 |
|
|
|
|
1 039 |
|
|
|
|
|
032 |
1 |
038 |
|
|
|
|
|
|
|
|
n12,26 |
009 |
|
|
|
|
|
|
027 |
|
||||||||||||||||||||||
0, |
|
1:17Av |
2,5 |
|
|
|
|
|
00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
29 |
|
|
|
|
|
|
0 9) |
|
|
|
|
|
0 2) |
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
037 |
|
|
|
|
|
|
|
|
|
|
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
FIG. 2.97 System configuration for stability analysis following faults
shown in Fig 2.97. A three-phase-to-earth fault having a duration of 0.2 s, applied at 11 kV board B5A, is simulated. To avoid repetition of the study, the fault is assumed to be cleared without the disconnection of any (faulted) plant. This has the effect of making the post-fault results pessimistic, i.e., 'safe'. The voltages of greatest interest in the analysis of a SES are those at the faulted board, at the busbar supplying the faulted board and at the boards fed from the faulted board. The speeds (or slips) of the induction motors fed from these boards are also important. A plot of voltage against time at these boards is shown in Fig 2.98 and a plot of induction motor slip against time is shown in Fig 2.99. For ease of analysis, the fault is applied 0.1 s after the study start, and removed 0.2 s later. The voltage reductions at the time of the fault and subsequent recovery are typical of electrical supply system behaviour. Induction motor speed change is inversely proportional to drive inertia and will vary accordingly.
The tabulated data output for a stability study includes:
•Bus bar voltages and phase angles.
•Synchronous generator electrical output and mechanical input.
•Synchronous generator rotor angle, field current and field voltage.
•Induction motor electrical input, mechanical output, slip and losses.
•Governor parameters.
•AVR parameters.
An example of tabulated data output for the above study is given in Fig 2.100, which gives comprehensive information about the system state at any specified time; in this example, 0.18 s after fault clearance.
Single fed generator systems
In the event of a breakdown in grid supplies, power station auxiliaries are sometimes supplied by a standby generator, usually a gas turbine or diesel-driven alternator. At some magnox type nuclear power stations, the gas circulators are fed by an auxiliary steam turbinegenerator running isolated from the grid system.
Analysis procedures for these single generator systems are similar to the procedures for multi-generator systems. However, load increments, relative to total generator capacity, are often greater on single generator fed systems than on multi-generator systems. Because of this, frequency deviations from nominal values tend to be greater on single generator fed systems. Depending on the frequency variation, it may be desirable to use a stability program which recalculates
184

Power system performance analysis
a
Os
TIME immon0.1
NG. 2.98 Voltage/time relationship at affected switchboard
30a _GILA |
114 SLP |
|
|
%
250
20 —
BSAY
TIME !seconds)
Eta. 2.99 Induction motor slip
185
Electrical system analysis |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Chapter 2 |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
A271? 0,742EA . |
|
la |
|
TIME |
• |
7.4900 |
|
|
9742417X |
02E33:7345 PER .4 71,72 • |
1 |
sTep LE40131 |
• |
2.0170 |
|
175/P0IN: |
• |
9 |
|
|
|||||||||||||||
|
|
|
37`;77A2353.3 YACH:NES. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
222A22 |
|
3115 |
|
42734 |
?OLE |
|
732C5 |
|
|
462H. |
|
|
|
PCNER 0371237 |
7E33, |
|
2E5M. |
|
22, |
7 |
FZELO |
|
PCWEA |
|
||||||||||
|
|
|
|
6A157 |
|
0;0_ |
|
75,7.7a:7E |
.27.6 |
|
017:7 |
|
|
723E5 |
|
|
352:6177 |
32322752 |
922,735E |
2,212E6-7 |
4C777.4.52. |
2332E4: |
13573.2 |
|
|
|||||||||||||
|
|
|
|
|
|
|
|
3.E-OlEES |
Si.?:, |
|
|
|
|
|
|
|
|
4.41 |
YVAR |
2.37 |
|
2.22, |
|
2.3. |
|
2.3. |
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
)2 |
|
|
|
|
|
|
|
657.747 |
|
|
662.121 |
145.319 |
3.195 |
|
1.71! |
|
2.127 |
|
2_321 |
|
1.1540 |
|
|
||||
|
|
|
23734.52_ |
|
|
415 |
-5,7722775 |
|
|
|
|
-525.545 |
|
|
-52'.773 |
-759:494 |
2,333 |
|
5.4)2 |
|
2,164 |
|
0.594 |
|
-.1565 |
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
171 |
|
|
|
:I |
7- -77 |
|
7742:1E:E9 |
|
FEEa31.29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
.7174 |
|
|
|
:. |
745 |
|
4 |
=1L |
|
|
1:30:37. |
|
|
60374: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
3.345 |
|
|
3.550 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
31 |
|
|
|
|
|
|
411 |
|
|
3.393 |
|
|
7.737 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
77E94AL |
71:7377:E. |
37:3477.0351 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
33532A |
|
55. |
|
|
17. |
332,2, |
|
|
20311232, |
5102214 |
CO3771202, |
|
7.9.7.617. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
1:2421 |
|
|
|
57233L |
|
|
|
5:343L5 |
|
44:0 |
SE 77:NG |
|
0501 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
13721 |
|
|
CI |
|
|
|
Cl |
|
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
31 |
|
|
|
|
0.0:03 |
|
|
-.257 |
|
|
-.869 |
|
|
560.3.30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
-4,977 |
|
|
-5.291 |
|
-529.189 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
:403.2210A |
43-727 |
%22.3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
335333 |
|
33. 1 |
|
|
772733 |
4035A |
|
254E9 |
791ST |
|
|
|
26924. |
1%74. |
21RWE |
IMO) |
POWER |
|
|
|
|
|
|
|
||||||||||
|
|
|
|
NAmE |
|
ND |
|
|
3_:? |
|
AcT!vE |
7E551:3 E |
vOL7AGE |
059.3E92 |
|
|
|
4017051 |
FACTOR |
|
|
|
|
|
|
|
||||||||||||
|
|
|
353 |
|
3 |
|
5_7130 |
494 |
|
|
494 |
|
58IAR |
|
P.D. |
2. 7. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
4.500 |
1. |
|
64 |
72,715 |
|
3.936 |
0.555 |
4.7404 |
|
|
915143 |
0.5671 |
|
|
|
|
|
|
|
||||||||||||||
|
|
|
312 |
|
21 |
|
5.1639 |
4.600 |
a |
761 |
12.715 |
|
3.116 |
0.155 |
4.7404 |
|
|
615143 |
1.567! |
|
|
|
|
|
|
|
||||||||||||
|
|
|
359 |
|
1 |
|
2.9475 |
5 |
610 |
5,954 |
4,311 |
|
2,146 |
0.131 |
5.6644 |
|
|
5-4102 |
0.8053 |
|
|
|
|
|
|
|
||||||||||||
|
|
|
353 |
|
1 |
|
3.0575 |
5.4:1 |
5.904 |
4.310 |
|
0.440 |
0.247 |
5.6644 |
|
|
5-8102 |
0,9353 |
|
|
|
|
|
|
|
|||||||||||||
|
|
|
355 |
|
|
|
.9446 |
5.638 |
5.710 |
3.535 |
|
1.999 |
0.067 |
5.6965 |
|
|
5,6962 |
0.5501 |
|
|
|
|
|
|
|
|||||||||||||
|
|
|
asc |
|
5 |
|
7.1440 |
5.639 |
5.'10 |
3.535 |
|
0.199 |
0.167 |
5.6665 |
|
|
5,4962 |
0.1511 |
|
|
|
|
|
|
|
|||||||||||||
|
|
|
5-59 |
|
3 |
|
7.6445 |
5.619 |
3.726 |
3.534 |
|
0.399 |
1.064 |
5.6165 |
|
|
5.6920 |
015510 |
|
|
|
|
|
|
|
|||||||||||||
|
|
|
355 |
|
|
2,3445 |
5.619 |
5.126 |
3.534 |
|
0,114 |
0.067 |
5.6965 |
|
|
5.6920 |
0.8550 |
|
|
|
|
|
|
|
||||||||||||||
|
|
|
143/ |
|
3 |
|
1.1960 |
1.041 |
1.161 |
1.346 |
|
1.122 |
0.005 |
0.0983 |
|
|
0.1453 |
0.4201 |
|
|
|
|
|
|
|
|||||||||||||
|
|
|
351 |
|
1 |
|
|
.2465 |
1.410 |
1.545 |
1.590 |
|
0.146 |
0.023 |
1.5173 |
|
|
1.5150 |
0.6993 |
|
|
|
|
|
|
|
||||||||||||
|
|
|
357 |
|
5 |
|
1.0814 |
1.511 |
!..5416 |
1.532 |
|
0.999 |
0.022 |
1.5254 |
|
|
1.5238 |
315107 |
|
|
|
|
|
|
|
|||||||||||||
|
|
|
353 |
|
3 |
|
5.6154 |
7.717 |
14.821 |
15.31.9 |
|
01586 |
0.211 |
1.1656 |
|
14.0166 |
015116 |
|
|
|
|
|
|
|
||||||||||||||
|
|
|
35,2 |
|
1 |
|
1.1141 |
9.763 |
9.466 |
4.255 |
|
0.399 |
1.118 |
1.11915 |
|
|
3.9049 |
0.3191 |
|
|
|
|
|
|
|
|||||||||||||
|
|
|
1451 |
|
2 |
1.15.2 |
|
0 |
0.200 |
1.000 |
0.000 |
|
0.000 |
1.301 |
0.300 |
|
|
0.0000 |
0.0000 |
|
|
|
|
|
|
|
||||||||||||
|
|
|
1733 |
|
2 |
|
4.1395 |
0.342 |
0.686 |
2.229 |
|
0.140 |
3.117 |
2,3193 |
|
|
0.5996 |
0.5199 |
|
|
|
|
|
|
|
|||||||||||||
|
|
|
3731 |
|
E |
|
1.5567 |
0.240 |
0.256 |
0.127 |
|
0.350 |
0.003 |
0.2417 |
|
|
0.2499 |
0.8954 |
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(a) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
3732 |
|
E |
|
1.5246 |
0.507 |
|
3.541 |
0.270 |
|
0.397 |
0.006 |
0.5144 |
|
0.5285 |
0.8951 |
|
|
|
|
|
|
|
||||||||||||||
|
|
353 |
|
3 |
|
-1618 |
0.424 |
0.355 |
0.212 |
|
0.929 |
0.706 |
0.4334 |
|
0.4493 |
0.9496 |
|
|
|
|
|
|
|
|||||||||||||||
|
|
363 |
|
A |
|
1.3565 |
0.301 |
|
0.323 |
0.205 |
|
0.121 |
0.004 |
0.3050 |
|
0.3166 |
0.9450 |
|
|
|
|
|
|
|
||||||||||||||
|
|
360 |
|
c |
|
0.6279 |
1.521 |
|
1.550 |
0.969 |
|
1.016 |
0.011 |
1.5311 |
|
|
1.5115 |
0.8432 |
|
|
|
|
|
|
|
|||||||||||||
|
|
362 |
|
A |
|
0.3657 |
3.136 |
|
0.203 |
0.177 |
|
1.216 |
0.003 |
3.1998 |
|
0.2001 |
0.7536 |
|
|
|
|
|
|
|
||||||||||||||
|
|
365 |
|
4 |
|
1.1742 |
0.172 |
|
0.179 |
0.105 |
|
1.016 |
0.002 |
0.1745 |
|
0.1749 |
0.19629 |
|
|
|
|
|
|
|
||||||||||||||
|
|
3)4 |
|
|
E |
|
73.5207 |
0.232 |
|
0.479 |
0.925 |
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
3 |
7 |
33 |
|
6 |
|
1.6129 |
0.199 |
|
0.201 |
0.103 |
|
0.720 |
0.014 |
1.2678 |
|
0.4042 |
0.4612 |
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
0.959 |
0.002 |
0.1920 |
|
0.1375 |
0.8914 |
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
3724 |
|
F. |
|
1.6921 |
0.321 |
|
3.367 |
0.177 |
|
0.956 |
0.004 |
0.1286 |
|
0.1391 |
0.9916 |
|
|
|
|
|
|
|
||||||||||||||
|
|
3738 |
|
E |
|
1.7241 |
1.489 |
|
0.524 |
0.269 |
|
0.351 |
0.006 |
0.4)61 |
|
0.5106 |
2.11896 |
|
|
|
|
|
|
|
||||||||||||||
|
|
3731 |
|
E |
|
1.0116 |
0.955 |
|
1.029 |
0.549 |
|
9.925 |
0.013 |
0.9724 |
|
1.0006 |
0,8827 |
|
|
|
|
|
|
|
||||||||||||||
|
|
5736 |
|
E |
|
1.6385 |
0.539 |
|
0.428 |
01519 |
|
0.954 |
1.305 |
0,4059 |
|
0.4176 |
0.1505 |
|
|
|
|
|
|
|
||||||||||||||
|
|
1631 |
|
D |
101.0000 |
0.200 |
|
0.000 |
1.000 |
|
0.000 |
0.000 |
0.3000 |
|
2.0000 |
2,0033 |
|
|
|
|
|
|
|
|||||||||||||||
|
|
43 |
|
|
2 |
|
2,73,55 |
0.150 |
|
0,162 |
0.083 |
|
0.352 |
0.002 |
0.1527 |
|
0.1576 |
0.8898 |
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
3)31.2333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
5125131 |
|
vULTAGE |
|
|
31025 |
|
|
|
300533 |
VOLTAGE |
|
ANGLE |
|
|
3112530 |
302.735E |
|
ANGLE |
|
8085624 |
102715E |
ANGLE |
|
|
|
|||||||||
|
|
31 |
|
0.381 |
|
|
-2,17 |
|
|
|
39 |
|
|
|
0.392 |
|
-2.52 |
|
|
2581 |
3.949 |
|
-5.53 |
|
J5211 |
|
9.839 |
-8.24 |
|
|
|
|||||||
|
|
31 |
|
0.993 |
|
|
-,14 |
|
|
|
358 |
|
|
|
0.946 |
|
-5.55 |
|
|
856 |
0.836 |
|
-6.27 |
|
34 |
|
3.994 |
155 |
|
|
|
|||||||
|
|
350 |
|
7.493 |
|
|
4,56 |
|
|
|
852 |
|
|
|
0.999 |
|
|
3.92 |
|
|
2551 |
1.001 |
|
|
1.99 |
|
3521 |
|
1.121 |
4.60 |
|
|
|
|||||
|
|
2552 |
|
0.944 |
|
|
-5.51 |
|
|
|
2522 |
|
|
0.939 |
|
|
4.55 |
|
|
363x |
0.822 |
|
-9.20 |
|
3735 |
|
0.190 -11.26 |
|
|
|
||||||||
|
|
3687 |
|
0.822 |
|
|
-9,11 |
|
|
|
5737 |
|
|
0.100 |
-10.96 |
|
|
106 |
0.962 |
|
-6.10 |
|
3425 |
|
1.109 |
3.26 |
|
|
|
|||||||||
|
|
36795 |
|
1.307 |
|
|
8,69 |
|
|
|
3637 |
|
|
1.106 |
|
|
3.68 |
|
|
5625 |
1.009 |
|
|
3.26 |
|
3637 |
|
0.962 |
-6.10 |
|
|
|
||||||
|
|
|
3'2Y |
|
1.390 |
|
|
-7.15 |
|
|
|
3135 |
|
|
0.997 |
|
-7.41 |
|
|
3722 |
1.011 |
|
|
1,96 |
|
9727 |
|
1.326 |
1.11 |
|
|
|
||||||
|
|
3797 |
|
1.020 |
|
|
1.19 |
|
|
|
5151 |
|
|
0.951 |
|
-9.44 |
|
|
3732 |
0.949 |
|
-9,55 |
|
8793 |
|
0.353 |
-3.11 |
|
|
|
||||||||
|
|
3724 |
|
0.956 |
|
|
-9.36 |
|
|
|
3705 |
|
|
0.958 |
|
-9.97 |
|
|
3736 |
0.954 |
|
-9.57 |
|
21 |
|
0.921 |
-1.41 |
|
|
|
||||||||
|
|
22 |
|
0.929 |
|
|
-9.41 |
|
|
|
31 |
|
|
|
3.929 |
|
-1.41 |
|
|
15 |
0.929 |
|
-4.41 |
|
25 |
|
0.821 |
-0.40 |
|
|
|
|||||||
|
|
35 |
|
3.929 |
|
|
-8.41 |
|
|
|
369.E |
|
|
0.523 |
|
-4.20 |
|
|
sm |
5.942 |
|
-6.01 |
|
266E |
|
1.710 |
3.27 |
|
|
|
||||||||
|
|
:537 |
|
0,921 |
|
|
-4.19 |
|
|
|
2612 |
|
|
0.621 |
|
-9.19 |
|
|
s607 |
0.162 |
|
-4.10 |
|
2605 |
|
0.362 |
-6.12 |
|
|
|
||||||||
|
|
|
36C9 |
|
1.009 |
|
|
3.26 |
|
|
|
262x |
|
|
1.909 |
|
|
3.26 |
|
|
2607 |
1.006 |
|
|
1.69 |
|
2600 |
|
1.006 |
3.68 |
|
|
|
|||||
|
|
159 -. |
|
0,995 |
|
|
7.55 |
|
|
|
J5CE |
|
|
0.399 |
|
|
3.92 |
|
|
JSAE |
0,936 |
|
-9.27 |
|
250E |
|
0.948 |
-5.55 |
|
|
|
|||||||
|
|
30111 |
|
0.999 |
|
|
4.56 |
|
|
|
2600 |
|
|
1.007 |
|
|
3,30 |
|
|
3737 |
2,953 |
|
-9.16 |
|
3780 |
|
0.950 |
-9.00 |
|
|
|
|||||||
|
|
3733 |
|
3,325 |
|
-11.39 |
|
|
|
37391 |
|
|
0.925 |
-11.29 |
|
|
1704 |
1.024 |
|
|
3.87 |
|
273 |
|
0.016 |
2.76 |
|
|
|
|||||||||
|
|
3151 |
|
1.043 |
|
|
1.e5 |
|
|
|
152 |
|
|
|
1.016 |
|
|
2.76 |
|
|
9732 |
1.142 |
|
|
1.95 |
|
J11 |
|
1.016 |
2.76 |
|
|
|
|||||
|
|
17211 |
|
1.050 |
|
|
2.34 |
|
|
|
210 |
|
|
|
1.016 |
|
|
2.76 |
|
|
365 |
1.116 |
|
|
2.16 |
|
177Y1 |
|
1.100 |
1.56 |
|
|
|
|||||
|
|
3 |
10 |
|
7.321 |
|
|
2.10 |
|
|
|
J4 |
|
|
|
0.929 |
|
-0.47 |
|
|
36 |
0.929 |
|
-0.41 |
|
29 |
|
0.923 |
-6.50 |
|
|
|
||||||
|
|
363 |
|
3.924 |
|
|
-0.40 |
|
|
|
44 |
|
|
|
0.721 |
|
-7.56 |
|
|
93 |
3.952 |
|
-7.84 |
|
|
|
|
|
|
|
|
|
||||||
• |
|
3 3321AL 5-77.2 2E3524 |
1 420E22E2 |
:0 |
2,02000 |
S. |
A: 82E2 |
FROM |
TIME |
0.4830 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(b)
FIG. 2.100 Example of data output for a stability study
186

WI'
Power system performance analysis
system component parameters which are Ire-
these
quency dependent.
Examples of the output from a dynamic stability study of an isolated system are shown in Fig 2.101.
The system modelled has been shown earlier in Fig 2.65; it represents a single steam generator supplying six gas circulators. The postulated fault is a three-phase- to-earth fault at the cable box (J2) of one of the
MOTOR LOADING OF 2.9MW - 0./25S FAULT
7-1
1 4
0 6-
1 005 -
0 4-
1 000
0 3 4
- GENERATOR TERMINAL VOLTAGE (P.U.) GENERATOR TERMINAL CURRENT (P.U. ON RATING)
GENERATOR REAL AND REACTIVE TERMINAL POWER (P.U. ON RATING) GENERATOR FREQUENCY (P.U.)
0 10 -
6-
14 -
5-
12"
0 05
10-
4-
8-
0 00 3
s -
2-
4-
0 05-
2-
OJ -0 10- 0- 0 0
0
MOTOR LOADING OF 2.9MW - 0.125S FAULT
REACTIVE TERMINAL POWER
REAL TERMINAL POWER
TIME.s
MOTOR 5 TERMINAL VOLTS (P U.)
MOTOR 5 TERMINAL CURRENT (P.U. ON RATING)
MOTOR 5 REAL AND REACTIVE TERMINAL POWER (P.U. ON 100MVA)
MOTOR 5 SLIP (%)
FIG. 2.101 Example of the output from a dynamic stability study on an isolated system
187

Electrical system analysis |
|
|
|
|
|
|
Chapter 2 |
|||||||||
|
|
|
|
|
|
|
|
|||||||||
gas |
circulators. It is, for analysis purposes, assumed |
|
cuit between GC.BD and J2, 0.125 s after the appli- |
|||||||||||||
to be of 0.125 s duration and is cleared by opening the |
|
cation of the fault. |
|
|
|
|
||||||||||
associated circuit-breaker at the main board (GC.BD). |
|
Figure 2.102 is included here to demonstrate the |
||||||||||||||
This |
is simulated in the analysis by removing the cir- |
|
unacceptable effects of slow fault clearance, in this |
|||||||||||||
|
|
"225 1 |
|
6- |
|
2 |
|
MOTOR LOADING OF 2 9mw - 0 1255 FAULT |
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
1 2- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 020 -1 |
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 - |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
015 - |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 8 - |
- |
|
0 8 |
|
|
|
|
|
|
|
|
|
|
|
1 |
1 - |
|
|
|
|
|
|
|
|
|
REACTIVE TERMINAL POWER |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
0 6- |
3 - |
|
0.6 |
|
|
|
|
|
|
|
|
|
|
|
1 005- |
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
REAL TERMINAL POWER |
|||
|
1 000 - |
0 4- |
2- |
|
04 |
|
|
|
|
|
|
|
|
|
|
|
|
0 995 - |
0 2- |
1- |
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
0.990 - |
0 - |
0 |
|
0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
5 |
|||||||||
|
|
|
|
|
|
0 |
1 |
2 |
TIME.s |
|
||||||
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
— GENERATOR TERMINAL VOLTAGE (P U.)
GENERATOR TERMINAL CURRENT (P.U. ON RATING)
GENERATOR REAL AND REACTIVE TERMINAL POWER (P.U. ON RATING)
— GENERATOR FREQUENCY (P.U.)
|
|
|
|
|
|
|
|
|
|
|
|
0 10- |
6- |
|
|
|
|
|
|
1 |
4 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
|
|
|
|
12 |
|
5- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
0 05- |
|
1 |
0 |
|
|
|
|
1 0 |
|
4- |
|
|
|
|
|||
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
a |
|
|
0 8 - |
|
|
|||
|
0 00- |
|
|
|
|
|
|
|
|
|
|
3- |
|
|
|
|
|
|
|
|
6 |
|
|
0 6 |
|
|
|
— |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2- |
|
|
|
|
|
|
|
4 |
0 05- |
|
0 4- |
|
|
|||
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
2 |
|
1- |
0.2 |
|
|
--- |
||
|
|
|
|
|
|||||
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
o - |
0 10 - |
0- |
0 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MOTOR LOADING OF 2.9MW 0.18S FAULT
PEAL TERMINAL POWER
REACTIVE TERMINAL POWER
|
|
3 |
|
|
|
|
5 |
||
TIME.s |
|
|
||
|
|
|||
|
|
|
|
|
|
|
|
||
|
|
|
|
|
MOTOR 5 TERMINAL VOLTS (P.U.)
MOTOR 5 TERMINAL CURRENT (P U. ON RATING)
MOTOR 5 REAL AND REACTIVE TERMINAL POWER (P U. ON 100M VA)
MOTOR 5 SLIP (%)
Flo. 2.102 Unacceptable effects of slow fault clearance
188

Power system performance analysis
example on a single generator system. The postulated fault is similar to that shown in Fig 2.101, except that its duration is increased from 0.125 s to 0.18 s, and we have an example where this power system has become unstable. Voltage remains depressed in the post-fault period and the remaining induction motors are unable to accelerate to their normal speed. In practice, the system condition simulated here would not occur -,ecause electrical protection is provided to disconnect •he generator in the event of sustained generator overload or sustained system voltage depression.
Afotor run - up
The time taken by an induction motor to run-up from standstill to normal running speed can be calculated using transient stability analysis programs. This run-up ti me can be important; for example, when a boiler feed pump fails and the water input to the boiler becomes insufficient to match the boiler steam output. Generating output will need to be reduced unless a standby pump can be substituted quickly for the failed pump to deliver adequate water supplies to the boiler.
To simulate induction motor performance over its whole speed range, it is necessary to provide motor resistance and reactance values, both at the normal motor running speed and when the motor is at standstill. These values are not the same. It is also necessary to specify how the mechanical load on the motor varies while the motor is running up; for example, the mechanical load may be assumed to be constant, or to be proportional to the motor speed. Other functions relating motor speed with mechanical load can be defined, as required.
The motor start and run-up is simulated by simply specifying one switching operation during the transient stability study, that of switching in the motor. An example from a direct-on-line motor start and runup study is given in Figs 2.103 (a) to (d). Referring to Fig 2.54, one of the boiler feed pump motors connected to 11 kV SB1 is assumed to be shutdown and is redesignated as motor A. One change in tap position on the station transformer is necessary to reduce the 11 kV station board voltage to 1.014 perunit. The resulting system condition is shown in Fig 2.103 (a).
The results of most interest to the analyst are:
•The run-up time of the motor.
•The effect of the motor on the system, especially by how much board voltages are reduced.
•The effects of these voltage reductions on other motors.
•The recovery time of voltages at all system levels.
The results of the motor run-up study are shown in graphical form in Figs 2.103 (b) and (c). Figure 2.103
(b) shows the voltages at boards which are electrically close to the motor being started and Fig 2.103 (c) shows the motor run-up curve (slip against time) and the slips of other motors which may be affected by the reduced voltage. The figures show this particular motor running up to speed in 10 s and that the other motors are able to continue supplying their mechanical loads while voltages are depressed during the motor run-up periods. It should be remembered that motor run-up times are strongly influenced by the voltage at the motor terminals during run-up. The voltage curves are those expected; after the initial fall in voltage there is a gradual slight recovery as the motor gains speed and takes less reactive power. Finally, there is a sharp rise in voltage as the motor passes its peak torque, and watt and VAr input reduce simultaneously. These results would be considered satisfactory, because voltages remain within design limits and the motor run-up time is acceptable.
Detailed system performance data are available throughout the study period. An example is given in Fig 2.103 (d), at 2 s after the motor start. It shows that motor A at 11 kV SB1 has a slip of 60.99% and a power input of 4.33 MW and 33.55 MVAr, with a terminal voltage of 0.843 per-unit at this instant.
3.4 Future developments of electrical analysis programs
Further developments of the electrical analysis programs that are currently in hand include the following:
•Harmonic analysis of a power system.
•Modelling of converter equipment as part of a user defined modelling facility.
•Transient recovery voltages.
189

Electrical system analysiS |
Chapter 2 |
|
LOAD FLOW RESULTS. BUSBAR PU VOLTS & LINE MV OADING
JEISI |
|
|
025 |
7 |
025 |
05
1 00
09S
0.30
085
080
175
0 70
00S
.32%6 I 002
isto |
1 3607 |
Ove |
1 026 |
|
|
|
|
|
|
|
|
|
|
|
|
|
•@, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0TSI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
SSIA |
|
|
|
001.1 |
|
WW |
|
|
|
|
|
|
VAIN |
¶5 |
|
|
FOS |
|||||
028 |
|
021 |
|
|
|
|
1 007 |
1 02$ |
|
016 |
|
|
|
|
|
|
1 022 |
ON |
1 035 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
02 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 035 |
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
0-2 |
0.1 |
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VIVWS |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
easi |
1160 |
|
|
|
|
20 Try |
|
|
||||||
|
|
|
|
1 |
01.2 |
|
7 027 |
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
1.02? |
1.009 |
1 017 |
|
1 025 |
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(a)
0 |
|
1 0.9 |
|
(b)
Fic. 2.103 Example of motor start and run-up study
190

Power system performance analysis
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3)0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
501 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
"0 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
610 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
500 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i1.9581 |
|
|
|
|
|
|
|
||
|
|
.0 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
11 |
- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
0 .,. .GSBI |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
- |
|
|
|
|
|
SO 1581 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4'3338: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.00 |
- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
o |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
:00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(c ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
0.7 7 ? |
|
scm.RFR |
122 |
7134E • |
2.1200 |
|
mAXIKUM |
ITERATIONS 7E0 57E0 • |
1 |
|
STEP LENGTH |
- |
3.0200 |
:78120I5T • |
21 |
|
|
||||||||||
|
611303410010 M3CRINE5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
31530R |
|
M/C |
ACTOR |
POLE |
|
510100 |
|
MECH. |
|
00240? |
1131020 |
|
TEAM. |
|
TERM. |
|
FIRE 0 |
FIELD |
?CHER |
|
|
||||||
|
|
NAME |
50. |
ANGLE |
005 |
|
SLIP |
|
?CHER |
|
ACTIVE |
REACTIVE |
VOLTAGE |
CURRENT |
VOLTA 3E |
CURRENT |
FACTOR |
|
|
||||||||||
|
|
|
|
|
|
|
DEGRESS |
0100 |
|
V.U. |
|
RN |
|
5114 |
WAR |
2.0. |
|
|
2.1. |
|
0.U, |
2.U. |
|
|
|
|
|||
|
41193 |
|
|
• |
|
-6.10. |
0 |
-.7000 |
-573.441 |
|
-574.530 |
-49.618 |
0.191 |
|
5.119 |
|
0.906 |
0.988 |
-.1963 |
|
|
||||||||
|
20+37 |
|
13 |
|
63.17 |
3 |
-.0100 |
|
661.247 |
|
660.433 |
260.042 |
0.991 |
|
7.161 |
|
2.620 |
2.626 |
0.9305 |
|
|
||||||||
|
,I•v191 |
1 |
|
3.20 |
o |
0.3033 |
|
0.000 |
|
0.330 |
0.310 |
3.303 |
|
0.035 |
|
3.323 |
3.030 |
0.0000 |
|
|
|||||||||
|
:51:137,00 00703 1030 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
0153A3 |
437 |
00700 |
mEcH. |
|
POWER INPUT |
|
|
7E1.04. |
TERM. |
|
TDROCE |
(1437 |
204E3 |
|
|
|
|
|
|||||||||
|
|
NA:C-.. |
ND |
SLIP |
PUER |
ACTIVE |
REACT!? Z |
0007543E |
CURAENT |
LOAD |
|
|
MOTOR |
FACTOR |
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
2.0. |
mw |
|
|
MW |
WAR |
|
|
P.U. |
0. 2. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:101/02: |
|
F |
1.1514 |
2.540 |
2.633 |
1.461 |
|
0.999 |
0.330 |
2.6185 |
|
|
2.0316 |
0.9742 |
|
|
|
|
|
|||||||||
|
|
1)- .3 |
|
F |
1.1504 |
|
|
|
|
|
|
|
|
||||||||||||||||
|
:1 , .., 3 |
|
I |
1.1335 |
2.588 |
2.633 |
1.463 |
|
0.991 |
0-010 |
2,6185 |
|
|
2.6116 |
0.0742 |
|
|
|
|
|
|||||||||
|
|
13.13 |
2 |
1.1105 |
2.918 |
3.015 |
1.767 |
|
0.999 |
0-015 |
3.0093 |
|
|
2.3041 |
0.9621 |
|
|
|
|
|
|||||||||
|
|
|
|
|
7 |
2,919 |
3.015 |
1.767 |
|
0.999 |
0-015 |
3.0093 |
|
|
2.9941 |
1.0627 |
|
|
|
|
|
||||||||
|
:10773 |
:.1030 |
2.908 |
2.359 |
1./67 |
|
0.999 |
1.035 |
2.9401 |
|
|
2.1410 |
1.9560 |
|
|
|
|
|
|||||||||||
|
|
A |
63.3954 |
-.104 |
4.326 |
33.548 |
|
0.047 |
0.471. |
-.2657 |
|
|
3.8511 |
0.1274 |
|
|
|
|
|
||||||||||
|
, |
103321 |
3 |
:.2687 |
|
|
|
3.9064 |
|
|
|
|
|
||||||||||||||||
|
|
9.805 |
10.066 |
5.531 |
|
0.043 |
0.136 |
10.0119 |
|
10.0123 |
|
|
|
|
|
||||||||||||||
|
3.3131 |
0 |
1.0429 |
0.991 |
1.032 |
0.830 |
|
1-316 |
0.313 |
1.0099 |
|
|
1.0102 |
0.2793 |
|
|
|
|
|
||||||||||
|
1.11131 |
|
0100,3215 |
0.000 |
0.110 |
0.000 |
|
3.000 |
0.310 |
0.0000 |
|
|
0.0000 |
0L3503 |
|
|
|
|
|
||||||||||
|
3 |
31102 |
|
|
|
1.7664 |
|
3.0218 |
|
|
|
|
|
|
|
|
|
||||||||||||
|
1,1531 |
|
1 |
2.999 |
3.081 |
3.330 |
|
1.006 |
0.343 |
|
|
3.1237 |
0.1123 |
|
|
|
|
|
|||||||||||
|
|
1 |
0,1574 |
1.263 |
1.115 |
0.791 |
|
7.037 |
0.018 |
1.2476 |
|
|
1.2917 |
0.0592 |
|
|
|
|
|
||||||||||
|
3 |
2311 |
|
|
|
2.1301 |
|
|
|
|
|
|
|
|
|||||||||||||||
|
3.3737 |
|
|
A |
0.195 |
3.205 |
0.111 |
|
1.811 |
3.003 |
3.1496 |
|
|
1.1996 |
0.4806 |
|
|
|
|
|
|||||||||
|
|
2 |
:10.3100 |
0.001 |
0.000 |
1.113 |
|
0.100 |
0.300 |
3.0000 |
|
|
0.2000 |
0.7040 |
|
|
|
|
|
||||||||||
|
3.1501 |
|
|
E |
1.6974 |
3.531 |
3.527 |
0.202 |
|
0.144 |
0.007 |
0.5491 |
|
|
3.5209 |
0.8015 |
|
|
|
|
|
||||||||
|
3.123, |
|
0 |
0.3941 |
1.073 |
1.960 |
0,909 |
|
0.944 |
0.325 |
1.0401 |
|
|
1-1402 |
1.9829 |
|
|
|
|
|
|||||||||
|
170003 |
3017.1475 |
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
. |
|
|
|
|
|
|
||||||
|
|
301333 |
|
04:753E |
ANGLE |
|
320050 |
VOLTAGE |
|
HUSSAR |
VOLTAGE |
|
ANGLE |
905050 vOLTAGE |
ANGLE |
|
|
||||||||||||
|
|
|
|
ANGLE |
|
|
|
|
|||||||||||||||||||||
|
|
401E0 |
1.391 |
-.58 |
|
13200 |
|
0.958 |
-3.59 |
111.0391 |
0.999 |
|
|
2.71 |
|
9933553 |
0.543 |
-7.42 |
|
|
|||||||||
|
|
3.1091 |
1.106 |
0.51 |
|
3.3551 |
3.837 |
-11.39 |
3.1E01 |
0.844 |
|
-10.95 |
|
FOS |
0.052 |
-11.51 |
|
|
|||||||||||
|
|
75 |
|
|
0.846 |
-11.92 |
|
CRPH |
|
0.042 |
-12.02 |
MX |
0.846 |
|
-11.74 |
|
ATP |
0.837 |
-12.44 |
|
|
||||||||
|
|
17i |
|
0.147 |
-11,76 |
|
0-8 |
|
0.841 |
-12.17 |
5511. |
0.641 |
|
-12.24 |
|
7131 |
1.311 |
3,09 |
|
|
|||||||||
|
|
2005 |
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
520 |
|
|
3.045 |
-11.93 |
|
7231 |
|
1.015 |
|
-.04 |
231010 |
0.901 |
|
|
7.10 |
|
MO |
0.934 |
-12.13 |
|
|
||||||
|
|
|
|
|
3.923 |
-12.63 |
|
5051 |
|
0-846 |
-11.75 |
HYD |
0.831 |
|
-12.20 |
|
CHL |
0.838 |
-12.37 |
|
|
||||||||
|
|
|
|
|
0.052 |
-11.37 |
|
JETTY |
|
0.843 |
-11.44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
FIG. 2.103 (cont'd) Example of motor start and run-up study
191

Electrical system analysis |
Chapter 2 |
|
|
4 References
IAllan, R. N. and Avouris, N. M.: Users Manual for GRASP2 (Graphic/Interactive Reliability of Electrical Auxiliary Systems of Power Stations): University of Manchester Institute of Science and Technology: April 1983
[ 2 1 Allan, R. N. and Billington, R.: Reliability Evaluation of Engineering Systems: Pitmans: 1987
Avouris, N. NI.: Interactive Reliability Analysis of Electrical Auxiliary Systems (PhD Thesis): University of Manchester Institute of Science and Technology: January 1983
14] Stott, B.: Power System Load Flow (MSc Lecture notes): University of Manchester Instittue of Science and Technology: 1973
[5]BrameIler, A.: Analysis of Linear Network Systems (MSc Lecture notes): University of Manchester Institute of Science and Technology: 1973
[6]Stagg and El-Abiad: Computer Methods in Power System
Analysis: McGraw-Hill: 1971
Ralston: A First Course in Numerical Analysis: McGraw-Hill: 1979
Pettofrezzo: Matrices and Transformations: Prentice Hall: 1966 (out of print)
Arrillaga, Arnold and Harker,: Computer Modelling of Electrical Power Systems: John Wiley: 1983
Wagner and Evans: Symmetrical Components: McGraw-Hili: 1933 (out of print)
Charles Concordia: Synchronous Machines: John Wiley: (out of print)
Stevenson: Elements of Power System Analysis: McGraw-Hill: 1982 (out of print)
IEEE Report on Computer Representation of Excitation Systems Paper 31TP 67-424: IEEE Summer Power Meeting: Portland, Oregon July 9-14, 1967
192