- •Часть 3 . Металлургия цветных металлов
- •3.1. Исторические вехи развития производства цветных металлов на Украине
- •Металлургия титана
- •3.2.1.Физико-химические свойства и области применения
- •Высокая коррозионная стойкость, низкая плотность и теплопроводность, высокая прочность обуславливает его широкое применение в аэрокосмической, химической и судостроительной отраслях промышленности.
- •Сырьевые источники титана
- •Восстановительная плавка ильменитовых концентратов.
- •Магниетермическое получение титана из тетрахлорида титана
- •3.2.5.1. Восстановление четыреххлористого титана магнием
- •3.2.6. Переработка титановой губки в товарную продукцию
- •3.2.7. Плавка титана и его сплавов
- •3.3. Производство меди
- •3.3.1. Свойства меди и области потребления
- •3.3.2 Медные руды и схема их переработки
- •3.3.3. Получение медных штейнов из концентратов
- •3.3.4. Переработка медного штейна
- •3.3.5. Рафинирование меди
- •3.3.5.1. Огневое рафинирование
- •3.3.5.2. Электролитическое рафинирование меди
- •3.3.6. Медные сплавы
- •3.4. Металлургия алюминия
- •3.4.1. Общие сведения об алюминии
- •3.4.2. Сырье для получения алюминия
- •3.4.3. Производство глинозема
- •3.4.3.1. Получение глинозема по способу Байера
- •3.4.3.2. Получение глинозема способом спекания.
- •3.4.3.3. Электролитическое производство алюминия
- •3.5. Металлургия магния
- •3.5.1 Общие сведения о магнии
- •3.5.2. Сырьевые источники магния
- •3.5.3. Общие принципы производства магния
- •3.5.4. Получение безводного хлорида магния
- •3.5.5.Электролитический способ получения магния
- •3.6. Предприятия цветной металлургии Украины
- •3.6.1. Горно- обогатительные предприятия
- •3.6.1.2. Вольногорский горно-металлургический комбинат
- •(Убрать правую часnь)
- •3.6.2. Металлургические предприятия
- •3.6.2.1. Производство алюминия
- •3.6.2.1 Запорожский алюминиевый комбинат (г.Запорожье)
- •3.6.2.3. Вторичный алюминий и сплавы
- •3.6. 2.4. Производство титана и магния
- •3.6.2.4.1.«Запорожский титано - магниевый комбинат» (г. Запорожье).
- •3.6.2. 2. Производство пигментного диоксида титана
- •3. 6.2.3. Производство циркония и гафния
- •3.6.4.4. «Донецкая химико- металлургическая фабрика» (п.Г.Т. Донское, Волновахский район, Донецкая область)
- •2.2.6. Производство меди , никеля, цинка, свинец
- •3. Производство цветных металлов
3.3.5. Рафинирование меди
3.3.5.1. Огневое рафинирование
Черновая медь всегда подвергается рафинированию для удаления из нее примесей, ухудшающих ее свойства, а также для извлечения из нее золота и серебра. В современной практике рафинирование проводят последовательно двумя принципиально различными методами: пирометаллургическим и электролитическим.
Огневое (пирометаллургическое) рафинирование меди проводят в отражательных печах. В отличие от отражательных печей для получения штейна эти печи меньших размеров (ширина 5 м, длина 12 - 15 м, глубина ванны 0,9 м).
1 – столбчатый фундамент; 2 – подина; 3 – газоход; 4 –распорно-подвесной свод; 5 – горелка; 6 – рабочее окно с заслонкой; 7 – шлаковое окно; 8 – щелевая летка
Весь цикл огневого рафинирования состоит из операций: загрузки и расплавления, окисления примесей, удаления газов, раскисления меди и разливки; он занимает обычно 12 - 16 ч. Примеси в черновой меди окисляют воздухом, который вдувают через стальную трубку диаметром 20 - 40 мм, футерованную огнеупорами и погружаемую в расплавленную медь.
Медь после огневого рафинирования подают на разливочные машины для отливки анодов, квадратных плит с ушками, имеющими толщину 40 - 50 мм, длину и ширину - ~ 1 м . Указанные аноды направляют на электролитическое рафинирование. Анодная медь содержит 99,4 – 99,6 % меди, остальное примеси, в том числе золото, серебро, селен и теллур. В среднем в 1 т меди содержится 30 – 100 г золота и до 1000 г серебра. Такую медь обязательно подвергают рафинированию методом электролиза.
3.3.5.2. Электролитическое рафинирование меди
Анодная медь содержит 99,4 - 99,6 % Сu; остальное приходится на долю оставшихся после огневого рафинирования примесей, включая золото, серебро, селен и теллур. В среднем в 1 т анодной меди содержится 30 - 100 г золота и до 1000 г серебра.
Одним из методов очистки от примесей является электролитическое рафинирование, основанное на различии потенциалов выделения из растворов различных элементов.
Следовательно электролитическая ячейка состоит из катода, анода и электролита, рис. 11.
Электролит – водный раствор сульфата меди (160 – 200 г/л) и серной кислоты (135 – 200 г/ л). Анод – литая черновая медь; катод – матрица – тонкие лист из электролитной меди
В черновой меди элементы подразделяются на элементы имеющие различный потенциал выделения по отношению к водороду:
Электроотрицательные – Fe, Ni, Co, Zn, Sn, Pb, которые практически полностью растворяются на аноде, могут попасть в раствор и выделиться на катоде совместно с медью, если их концентрация становится выше определенного предела. Для избежания их выделения необходимо не допускать повышение их концентрации выше определенного предела или предварительно от них очищаться другими методами ;
Близкие потенциалы выделения к меди – As, Sb, Bi. Их переход в катодный металл наиболее вероятен. Для избежания их выделения электролит периодически выводится из цикла и подвергается регенерации;
Электроположительные - Au, Ag. В условиях электролиза не растворяются и остаются в анодном шламе.
Примеси химических соединений - Cu2S, Cu2Se, Cu2Te. Вследствие электрохимической нейтральности и малой растворимости в электролите переходят в шлам совместно с благородными металлами.
Механизм электролитического рафинирования меди включает следующие элементарные стадии:
электрохимическое растворение меди на аноде с отрывом электронов и образованием катиона:
Сu -2 е → Сu 2+;
перенос катиона через слой электролита к поверхности катода;
электрохимическое восстановление катиона меди на катоде:
Cu 2 + 2 e → Cu;
4) внедрение образовавшегося атома меди в кристаллическую решетку катода (рост катодного осадка).
Электролитическое рафинирование меди проводят в ваннах, наполненных раствором сернокислой меди, подкисленным серной кислотой. Размеры ванн зависят от размеров и числа электродов. В ваннах устанавливают до 45 катодов и 44 анода. Корпуса ванн изготовляют из бетона или дерева, стенки ванны внутри покрывают винипластом, свинцом или другим кислотоупорным материалом. Аноды соединяют с положительным полюсом источника постоянного тока (рис. 12).
Ионы меди из раствора восстанавливаются и плотными кристаллами оседают на катодных основах.
Рис. 12. Электролизная ванна для рафинирования меди:
1 — деревянный корпус ванны; 2 — аноды; 3 — катоды; 4 — отверстие для удаления шлака
Катоды, извлеченные из ванн, тщательно промывают водой, а затем их направляют для переплавки или производства сплавов в электрических или отражательных печах.
Сульфатная медь
В электролизном цехе (электролитическая ванна)