Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопрос 23.docx
Скачиваний:
23
Добавлен:
09.02.2015
Размер:
1.1 Mб
Скачать

Вопрос 46!

рименение дифференциала к приближенным вычислениям

Как уже известно, приращение ∆у функции у=ƒ(х) в точке х можно представить в виде ∆у=ƒ'(х)•∆х+α•∆х, где α→0 при ∆х→0, или ∆у=dy+α•∆х. Отбрасывая бесконечно малую α•∆х более высокого порядка, чем ∆х, получаем приближенное равенство

у≈dy,                                              (24.3)

причем это равенство тем точнее, чем меньше ∆х.

Это равенство позволяет с большой точностью вычислить приближенно приращение любой дифференцируемой функции.

Дифференциал обычно находится значительно проще, чем приращение функции, поэтому формула (24.3) широко применяется в вычислительной практике.

<< Пример 24.3

Найти приближенное значение приращения функции у=х3-2х+1 при х=2 и ∆х=0,001.

Решение: Применяем формулу (24.3): ∆у≈dy=(х3-2х+1)'•∆х=(3х2-2)•∆х.

Итак, ∆у0,01.

Посмотрим, какую погрешность допустили, вычислив дифференциал функции вместо ее приращения. Для этого найдем ∆у:

∆у=((х+∆х)3-2(х+∆х)+1)-(х3-2х+1)=х3+3х2•∆х+3х•(∆х)2+(∆х)3-2х-2•∆х+1-х3+2х-1=∆х(3х2+3х•∆х+(∆х)2-2);

Абсолютная погрешность приближения равна

|∆у-dy|=|0,010006-0,011=0,000006.

Подставляя в равенство (24.3) значения ∆у и dy, получим

ƒ(х+∆х)-ƒ(х)≈ƒ'(х)∆х

или

ƒ(х+∆х)≈ƒ(х)+ƒ'(х)•∆х.                            (24.4)

Формула (24.4) используется для вычислений приближенных значений функций.

<< Пример 24.4

Вычислить приближенно arctg(1,05).

Решение: Рассмотрим функцию ƒ(х)=arctgx. По формуле (24.4) имеем:

arctg(x+∆х)≈arctgx+(arctgx)'•∆х,

т. е.

Так как х+∆х=1,05, то при х=1 и ∆х=0,05 получаем:

Можно показать, что абсолютная погрешность формулы (24.4) не превышает величины М•(∆х)2, где М — наибольшее значение |ƒ"(х)| на сегменте [х;х+∆х].

Вопрос 47!

Производные высших порядков явно заданной функции

Производная у'=ƒ'(х) функции у=ƒ(х) есть также функция от х и называется производной первого порядка.

Если функция ƒ'(х) дифференцируема, то ее производная называется производной второго порядка и обозначается у"

Итак, у"=(у')'.

Производная от производной второго порядка, если она существует, называется производной третьего порядкаи обозначается у'" (или ƒ'"(х)). Итак, у'"=(y")'

Производной n-го порядка (или n-й производной) называется производная от производной  (n-1) порядка:

y(n)=(y(n-1)) .

Производные порядка выше первого называются производными высших порядков.

Начиная с производной четвертого порядка, производные обозначают римскими цифрами или числами в скобках (уνили у(5)— производная пятого порядка)

Производные высших порядков неявно заданной функции

Пусть функция у=ƒ(х) задана неявно в виде уравнения F(x;y)=0.

Продифференцировав это уравнение по х и разрешив полученное уравнение относительно у', найдем производную первого порядка (первую производную). Продифференцировав по х первую производную, получим вторую производую от неявной функции. В нее войдут х,у,у. Подставляя уже найденное значение у' в выражение второй производной, выразим у" через х и у.

Аналогично поступаем для нахождения производной третьего (и дальше) порядка.

<< Пример 23.2

 Найти у'", если х22=1.

Производные высших порядков от функций, заданных параметрически

Пусть функция у=ƒ(х) задана параметрическими уравнениями

Как известно, первая производная у'х находится по формуле (23.1)

Найдем вторую производную от функции заданной параметрически. Из определения второй производной и равенства (23.1) следует, что

Аналогично получаем

Механический смысл производной второго порядка

Пусть материальная точка М движется прямолинейно по закону S=f(t). Как уже известно, производная S tравна скорости точки в данный момент времени: S't=V.

Покажем, что вторая производная от пути по времени есть величина, ускорения прямолинейного движения точки,т. е. S"=α.

Пусть в момент времени t скорость точки равна V, а в момент t+∆t — скорость равна V+∆V, т. е. за промежуток времени ∆t скорость изменилась на величину ∆V.

Отношение ∆V/∆t выражает среднее ускорение движения точки за время ∆t. Предел этого отношения при ∆t→0 называется ускорением точки М в данный момент t и обозначается буквой α:

Но V=S't. Поэтому α=(S't)', т. е. α=S't'