Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВНД.docx
Скачиваний:
65
Добавлен:
28.05.2022
Размер:
762.47 Кб
Скачать
  1. Синапс, строение, функции.

Синапс — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой.

Функции:

  • трофическая (осуществляются влияния, приводящие к изменению метаболизма иннервируемой клетки, ее структуры и функции)

  • передача нервного импульса между двумя клетками (причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться)

Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём, посредством прохождения ионов из одной клетки в другую.

Особенности проведения возбуждения в химических синапсах

  • Одностороннее проведение возбуждения - в направлении от пресинаптического окончания в сторону постсинаптической мембраны.

  • Замедленное проведение сигнала объясняется синаптической задержкой (интервал между приходом импульса к пресинаптической мембране и возникновением ВПСП в нейроне составляет 0,2-0,5 мс). Необходимо время для выделения медиатора из пресинаптического окончания, диффузии его к постсинаптической мембране, возникновения ВПСП.

  • Низкая лабильность синапсов, равная 100-150 передаваемым импульсам в секунду, что в 5-6 раз ниже лабильности аксона. Главной причиной низкой лабильности синапса является сравнительно большая совокупная длительность процессов, обеспечивающих проведение возбуждения от пресинаптической мембраны к нейрону.

  • Проводимость химических синапсов сильно изменяется под влиянием биологически активных веществ, лекарственных средств и ядов. Она легко блокируется и стимулируется.

  1. Медиаторы в нервной системе.

Возбужденный нейрон создает нервный импульс электрохимической природы и передает его по аксону с большой скоростью. Когда импульс доходит до конца аксона, там выделяется химическое вещество медиатор, который через тонкую (синаптическую) щель между клетками доходит до клетки-мишени и воздействует на неё.

Медиаторами ЦНС являются многие химические вещества, разнородные в структурном отношении (в головном мозге обна­ружено около 30 биологически активных веществ).

По химиче­скому строению их можно разделить на несколько групп, главны­ми из которых являются моноамины, аминокислоты и полипеп­тиды. Достаточно широко распространенным медиатором является ацетилхолин.

  • Ацетилхолин. Встречается в различных отделах ЦНС, извес­тен в основном как возбуждающий медиатор: в частности, является медиатором нейронов спинного мозга, иннервирующих ске­летную мускулатуру.

  • Моноамины. Выделяют катехоламины, серотонин и гистамин. Большинство из них в значительных количествах содержится в нейронах ствола мозга, в меньших количествах они обнаружи­ваются в других отделах ЦНС.

    • Катехоламины обеспечивают возникновение процессов возбуждения и торможения, например, в промежуточном мозге, черной субстанции, лимбической системе, полосатом теле.

    • С помощью серотонина в нейронах ствола мозга переда­ются возбуждающие и тормозящие влияния, в коре мозга - тормозящие влияния. Серотонин часто называют «гормоном счастья», он вырабатывается в организме в моменты экстаза, его уровень повышается во время эйфории и понижается во время депрессии. Для выработки серотонина обязательно нужен ультрафиолет, недостаток ультрафиолета в зимнее время года и является причиной столь распространённой сезонной депрессии.

    • Гистамин в довольно высокой концентрации обнаружен в гипофизе и срединном возвышении гипоталамуса. В остальных отделах ЦНС уровень гистамина очень низкий. Медиаторная роль его изучена мало.

  • Аминокислоты. Кислые аминокислоты (глицин, уамино-масляная кислота) являются тормозными медиаторами в синапсах ЦНС и действуют на тормозные рецепторы. Ней­тральные аминокислоты (а-глутамат, ct-аспартат) передают воз­буждающие влияния и действуют на соответствующие возбуж­дающие рецепторы. Предполагают, что глутамат может быть ме­диатором афферентов в спинном мозге. Рецепторы глутаминовой и аспарагиновой аминокислот имеются на клетках спинного моз­га, мозжечка, таламуса, гиппокампа, коры большого мозга. Пола­гают, что глутамат. - самый распространенный медиатор ЦНС.

    • Глицин — как нейромедиаторная аминокислота, проявляет двоякое действие. Глициновые рецепторы имеются во многих участках головного мозга и спинного мозга. Связываясь с рецепторами, глицин вызывает «тормозящее» воздействие на нейроны, уменьшает выделение из нейронов «возбуждающих» аминокислот, таких как глутамат, и повышает выделение ГАМК. Также глицин связывается со специфическими участками NMDA-рецепторов и, таким образом, способствует передаче сигнала от возбуждающих нейротрансмиттеров глутамата и аспартата. В спинном мозге глицин приводит к торможению мотонейронов, что позволяет использовать глицин в неврологической практике для устранения повышенного мышечного тонуса.

  • Полипептиды. В синапсах ЦНС они также выполняют медиаторную функцию. В частности, субстанция Р является медиа­тором нейронов, передающих сигналы боли. Особенно много это­го полипептида в дорсальных корешках спинного мозга. Это по­служило основанием к предположению, что субстанция Р может быть медиатором чувствительных нервных клеток в области их переключения на вставочные нейроны. Субстанция Р в больших количествах содержится в гипоталамической области.

  • Энкефалины и эндорфины - медиаторы нейронов, блокирующих болевую импульсацию. Они реализуют свое влияние посредством соответствующих опиатных рецепторов, кото­рые особенно плотно располагаются на клетках лимбической сис­темы; много их также на клетках черной субстанции, ядрах про­межуточного мозга и солитарного тракта, имеются они на клетках голубого пятна, спинного мозга.

  • Ангиотензин участвует в передаче информации о потребности организма в воде, люлиберин - в половой активности.

Физиологические эффекты действия некоторых медиаторов головного мозга.

Норадреналин регулирует настроение, эмоциональные реакции, обеспечивает поддержание бодрство­вания, участвует в механизмах формирования некоторых фаз сна, сновидений;

Дофамин - в формировании чувства удо­вольствия, регуляции эмоциональных реакций, поддержании бодрствования. Дофамин полосатого тела регулирует сложные мышечные движения.

Серотонин ускоряет процессы обуче­ния, формирования болевых ощущений, сенсорное восприятие, засыпание,

Ангиотензин - повышение АД, торможение син­теза катехоламинов, стимулирует секрецию гормонов; информи­рует ЦНС об осмотическом давлении крови.

Олигопептиды -медиаторы настроения, полового поведения; передачи ноцицептивного возбуждения от периферии в ЦНС, формирования болевых ощущений.

Эндорфины, энкефалины, пептид, вы­зывающий дельтасон, обусловливают антиболевые реак­ции, повышение устойчивости к стрессу, сон.

Простагландины вызывают повышение свертываемости крови, изменение тону­са гладких мышц, усиление физиологического эффекта медиаторов и гормонов.

Мозгоспецифичные белки различных отделов голов­ного мозга влияют на процессы обучения.