Документ
.pdf. . .
|
БV |
- |
|
( . |
, 10-13 |
2018 |
.) |
|
2- |
|
|
|
|
1 |
|
2018
1
658 (082)
65.31 43
|
667 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
БV |
|
|
- |
|
|
667 |
|
|
|
: |
2- |
. .1 / . . |
|
; |
|
|
« |
- |
|
|
214 . |
|
|
|
|
|
. – |
|
: |
|
- |
, 2018. – |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ISBN 978-5-7731-0689-0 ( . 1) |
|
|
|
|
|
|
|
|
|
|
|||
ISBN 978-5-7731-0688-3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
XV |
|
|
|
|
- |
|
- |
|
|
« |
|
. |
|
|
». |
|
: |
« |
|
|
|
- |
|
|
|
|
|
|
|
|
|
|
||||
|
- |
|
|
|
» |
« |
|
|
|
|
». |
|
- |
|
, |
|
|
|
|
, |
|
|
|
|
|
. |
- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- |
|
|
|
|
, |
- |
, |
, |
|
, |
|
|
|
|
|
- |
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
658 (082) |
|
|
|
|
|
|
|
|
|
|
|
|
|
65.31 |
43 |
|
|
|
|
|
|
|
|
: |
|
|
|
|
|
|
. . |
– |
. . ., |
. – |
|
|
( |
); |
|
|
|
|
|
|
. . |
– . . ., |
., |
. |
|
|
|
|
– |
. |
|
- |
|
|
|
|
; |
|
|
|
|
|
|
|
|
|
|
|
. . |
– . . ., |
|
– |
. |
|
|
|
( |
|
); |
|
|
|
. . |
– . .- . , |
|
. ( |
|
, |
); |
|
|
|
|
|
|
|
. . |
– |
. . ., |
. |
|
, |
); |
|
|
|
|
|
|
|
. . |
– . . ., |
. ( |
|
|
, |
); |
|
|
|
|
|
|
|
. . |
– . . ., |
. ( |
|
- - |
, |
|
); |
|
|
|
|
|
|
. . |
– . . ., |
. – |
|
|
|
|
( |
); |
|
|
|
|
|
. . |
– . . ., |
. – |
|
|
|
|
( |
). |
|
|
|
|
|
, |
|
|
|
|
. |
, |
|
|
|
|
, |
- |
|
|
|
|
|
|
|
|
|
|
|
|
||
ISBN 978-5-7731-0689-0 ( . 1) |
|
© |
|
« |
|
|
», 2018 |
|
|||||
ISBN 978-5-7731-0688-3 |
|
|
|
|
|
|
|
|
|
|
2
-
334.02
. . |
|
|
|
|
- |
( |
). |
- |
|
, |
- |
.
.
MODELS OF SUSTAINABLE MANAGEMENT IN ACTIVE SYSTEMS
G.A. Ougolnitsky
Southern Federal University
theory of sustainable management in complex dynamical systems with human participation (active systems) is presented. Sustainable development means a simultaneous satisfaction of the requirements of homeostasis and incentivity which are explained in the text. The principal attention is paid to the methodological aspects and the survey of the solved problems.
. |
Д1-2Ж, |
|
. . |
- |
|
|
|
||
|
, |
. . |
Д3-4Ж. |
|
|
Д6Ж. |
|
Д5Ж, |
- |
|
|
|
|
|
, . . |
|
Д7-8Ж. |
|
|
|
. |
- |
|
|
.- . |
Д9Ж. |
|
|
|
|
Д10Ж |
|
||
|
|
|
|
|
|
|
|
, |
|
|
( |
). |
, |
|
|
|
. |
, |
- |
|
|
|
|
©. ., 2018
3
|
|
Д13Ж. |
Д11-12Ж, |
|
|
|
- |
1. |
|
|
|
. |
|
- |
|
|
|
|
|
|
|||
|
|
|
|
|
. |
|
- |
|
|
|
, |
|
, |
|
- |
|
|
|
. |
|
, |
|
|
|
|
( |
) - |
|
|
|
|
( |
) |
|
. |
|
|
|
- |
|
, . . |
, |
|
|
, |
|
- |
|
). |
|
|
|
( |
|
- |
|
|
|
|
|
. |
|
|
|
, |
|
, |
|
, |
- |
|
|
|
|
|
||||
|
|
. |
, |
|
. |
|
- |
|
|
|
|
|
|||
|
|
. |
, |
|
|
|
- |
|
|
, |
|
|
|
- |
|
|
|
|
|
|
|
||
|
. |
|
( |
, |
) - |
|
- |
|
, |
. |
|
|
|
|
- |
|
|
|
|
|
|
|
|
1. |
|
|
: |
. |
, |
. . |
- |
|
|
|
|||||
|
, |
|
|
|
|
|
- |
|
|
. |
|
|
. |
|
, |
2. |
|
|
: |
|
|
|
|
|
, |
|
. |
|
|
||
3. |
|
: |
|
|
- |
||
|
|
|
|
|
|||
|
|
|
. |
|
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
|
- |
|
|
. |
|
|
|
|
- |
|
). |
|
|
|
|
( |
- |
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
- |
|
|
|
|
|
|
|
- |
|
|
|
|
|
|
. |
|
- |
|
|
|
, |
|
, |
|
, |
|
, |
, |
. . |
|
|
|
- |
|
|
|
|
|
|
||
|
/ |
. |
|
|
- |
|
- |
|
|
, |
|
|
|
|
, |
|
|
|
. |
( |
) |
|
- |
|
|
|
, |
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
, |
|
|
|
|
. |
|
|
|
4 |
|
|
|
|
|
. |
, - |
( |
), |
- |
|
. |
|
|
|
|
Ji (u( )) e t gi (x(t),u(t),t)dt max |
|
(1) |
0 |
|
|
|
ui (t) Ui , |
i N; |
|
|
|
|
|
x f (x(t),u(t),t), |
x(0) x0 . |
|
|||
|
N {1,...,n}- |
|
; |
gi , Ji - |
||
|
|
|
|
|
i N ; ui (t) - |
|
i N |
|
t ; |
Ui - |
|
|
|
u(t) (u1(t),...,un (t)) |
- |
|
|
|
; |
|
|
|
|
|
|
t ; x0 - |
|
|
|
|
|
|
; [0,1] - |
|
. |
|
|
T . |
|
|
|
|
|
|
|
|
||
|
Ui |
|
|
|
|
|
|
t |
|
|
|
|
|
|
0 |
, |
|
|
x , t 0,u U |
|
|| f (x,u,t)|| (1 || x||) ; |
|
gi |
|
|
||
|
|
|
|
|
- |
t |
t 0 |
, |
|
|
|
(2). |
|
|
x(t) X* Rn, t [0, ). |
|
|
|||
, |
|
, |
|
|
|
(4) |
|
|
|
|
(4). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)-(3) |
|
NE ( |
|
|
|
). |
, NE , |
Ui |
gi (ui ,u i ) |
|
ui |
Ui |
|
u i U i , i N . |
|
|
U* {u U : t x(t) X*}- |
|
||||
, |
|
|
, |
U* , |
|
|
|
UDG NE U* , |
|
|
|||
. |
|
u UDG |
|
, |
|
|
|
|
|
|
|
. |
|
5
|
|
(2) |
|
|
(3) |
|
|
- |
|
( |
) |
|
|
i N ; |
U U1 |
... Un ; |
x(t)- - |
; f - |
|
, |
|
|
. |
|
|
- |
|
|
, |
|
|
Д5Ж: |
; |
- |
f |
|
; |
|
; |
|
|
|
x |
|
|
|
- |
|
|
(4) |
|
|
- |
|
|
(1)-(3) |
NE ,
,
, |
- |
.
(1)-(4)
J(u( )) Ji (u( )).
i N
, |
|
|
|
|
|
uNE NE \U |
DG |
u U |
DG |
: J(u) J(uNE ) , |
(5) |
|
|
|
|
||
|
(4) |
|
|
. |
uNE NE \U |
DG |
u U |
DG |
: J(u) J(uNE ) , |
|
|
|
|
|
(6) |
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
i N uNE NE \U |
DG |
u U |
DG |
: J |
(u) J |
i |
(uNE ), |
(7) |
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
i |
|
|
|
|
|
|
|
|
, |
- |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
i N uNE NE \U |
DG |
u U |
DG |
: J |
i |
(u) J |
(uNE ), |
(8) |
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
i |
|
|
|
|
|
. |
- |
|||||||
, (7) → (5), (6) → (8). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
UDG NE U* , |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)-(4) |
- |
||||||||||
UDG , |
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(6) |
|
|
|
|
|
|
|
|
(8), |
|
|
, |
- |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
, |
|
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
( |
|
|
) |
|
|
(3) |
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)- |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
J(u()) max |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(9) |
|
||||
(2)-(3). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
Arg max J(u( )) . |
|
|
UOC U * |
|
, |
|
|
- |
|||||||||||||||
|
|
|
U |
|
|
U |
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
u( ) U |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
|
|
|
|
|
|
|
UOC |
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
U |
\UOC u UOC : J(u) J( |
|
), . . |
|
|||||||||||||||
|
|
|
|
|
|
|
u |
u |
|
||||||||||||||||||
UOC |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
|
|
|
|
|
|
|
|
. |
- |
|
(4). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)-(4). |
|
, |
|
|
|
|
, |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(4). |
|
|
- |
||
(9), (2)-(4). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
( - , |
|
|
.) |
- |
|
Д12Ж. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6
|
, |
|
|
|
|
|
|
|
|
, |
, |
|
|
|
|
|
|
|
|
|
|
- |
|
||
|
|
|
|
|
|
|
|
|
|
|
( |
) |
|
|
|
( |
|
|
|
|
|
|
). |
|
- |
|
|
|
|
|
|
|
|
|
|
|
|
|
J0 (p( ),q( ),u( )) e t g0 (x(t), p(t),q(t),u(t),t)dt max |
|
(10) |
||||||||||
|
|
0 |
|
|
|
|
|
|
|
|
|
|
p(t) P,q(t) Q; |
|
|
|
|
|
|
|
|
|
|
(11) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ji (p( ),q( ),u( )) e t gi (x(t), pi (t),u(t),t)dt max |
|
(12) |
||||||||||
|
|
0 |
|
|
|
|
|
|
|
|
|
|
ui (t) Ui (qi (t)), |
i N; |
|
|
|
|
|
|
|
(13) |
|||
|
(3) |
(4). |
|
|
|
|
|
g0, J0 - |
|
|
||
|
; |
p(t) (p1(t),..., pn (t)) - |
|
; |
||||||||
q(t) (q1(t),...,qn (t))- |
|
|
|
|
|
|
|
|
. |
, |
, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(4) |
. |
|
, |
|
|
|
|
|
|
|
|
|
|
|
NE(p,q) , |
|
- |
|
. |
|
|
|
|
|
|
|
|
|
|
, |
(1)-(3). |
|
|
|
|
|
|
|
|
|
|
|
|
Umax |
Arg max |
max J |
0 |
(p,q,u) - |
|
|
||||||
|
p P,q Q u U(q) |
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|||
|
; |
|
|
|
|
|
|
|
|
|
|
|
Umax |
Arg max |
max |
|
|
|
J |
0 |
(p,q,u) - |
|
|
||
NE |
p P,q Q u NE( p,q) |
|
|
|
|
|
||||||
|
|
|
|
; |
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
U* |
Arg max |
max |
J |
0 |
(p,q,u) |
- |
|
|
||||
max |
p P,q Q u U* |
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
||
, |
; |
|
|
|
|
|
|
|
|
|
|
|
UNE* (p,q) NE(p,q) U * -
;
UHDG(p,q) UNEmax Umax* U
.
*
NE
|
, |
(p,q) - |
- |
(p,q) P Q:UHDG , |
|
(10)-(13), |
|
(3)-(4) |
|
. |
|
М |
|
. |
- |
|
|
Д11Ж. |
- |
- |
- |
|
|
( |
) |
, |
- |
|
|
. |
- |
Д5Ж |
|
ε- |
- |
, |
|
, |
|
|
|
7 |
|
,
Д14Ж. Д11Ж.
. Д15Ж
.
v(t) (t, x(t)); v(t) (t,u(t)).
), -
v(t) q(t)
.
SCI J0max J0NE ,
Jmax |
max max J |
0 |
(p,q,u), |
0 |
p P,q Q u U(q) |
|
|
|
|
|
. |
, |
- |
|
- |
|
|
|
|
|
|
- |
|
|
- |
|
. |
Д16Ж |
( |
) |
- |
|
|
- |
:v(t) (t)
v(t) (t)
2t 2x v(t) p(t);
.
J0NE max min
p P,q Q u NE( p,q)
1t |
1x ( |
|
- |
( |
|
) Д17,18Ж; |
|
|
|
(5), |
(7) |
|
|
(14) |
|
J0 (p,q,u). |
|
|
|
|
|
|
. |
SCI 0 . |
SCI 0 |
|
|
. |
|
|
|
- |
|
|
|
|
|
|
||
. |
|
|
|
|
|
- |
|
Д19Ж. |
|
|
|
|
|
|
Д20-21Ж |
|
|
|
- |
|
|
|
|
|
- |
||
|
|
. |
Д22Ж |
|
, |
- |
. |
|
|
|
|
|
|
Д23Ж |
|
|
|
|
- |
|
|
|
. |
Д24Ж |
- |
||
|
|
|
|
- |
||
|
|
|
|
|
|
|
|
( |
). |
Д25Ж |
|
|
- |
- |
|
|
|
|
|
- |
. |
Д26Ж |
. |
|
- |
|
|
|
Д27Ж |
|
|
|
- |
|
|
|
|
|
|
||
|
. |
Д28Ж |
|
|
|
- |
|
. |
Д29-30Ж |
|
- |
, |
|
|
|
|
|
|||
|
|
|
|
|
( |
- |
) |
. |
Д31Ж |
|
|
- |
- |
|
. |
Д32-33] |
|
|
|
|
|
|
8 |
|
|
|
|
-
. |
|
|
. |
|
|
, |
|
, |
, |
, |
- |
|
. |
- |
|
( |
|
) |
( |
, |
). |
|
|
|
, |
- |
|
, |
- |
. |
|
- |
. |
|
, |
. |
|
|
|
1. |
. . |
|
|
|
|
. - |
.: |
, 1977. - |
|
255 . |
|
|
|
|
|
|
|
|
|
|
|
2. |
. ., |
|
. . |
|
: |
|
|
. - |
.: |
|
, 1999. - 128 . |
|
|
|
|
|
|
|
|
|
|
3. |
. . |
, 2007. - 584 . |
|
. - |
.: |
- |
- |
||
- |
|
|
|
|
|
|
|
|
||
|
4. |
|
|
/ |
. . . |
. - .: |
, 2011. - 192 . |
|
||
|
5. |
. ., |
. ., |
|
. . |
|
|
|
- |
|
|
|
. - |
.: |
, 1991. – 288 . |
|
|
|
|
||
|
6. Laffont J.-J., Martimort D. The Theory of Incentives: The Principal-Agent Model. - |
|||||||||
Princeton University Press, 2002. - 421 . |
|
|
|
|
|
|
||||
|
7. |
- |
|
. ., |
. . |
|
|
|
|
. - |
.: |
|
- |
, 2000. - 416 . |
|
|
|
|
|
|
|
|
8. Clark W.C. Sustainability Science: A Room of its Own // Proceedings of the National |
|||||||||
Academy of Science, 2007 (114), 1737-1738. |
|
|
|
|
|
|||||
|
9. Aubin J.-P. Viability Theory. - Springer-Verlag, 1991. - 572 . |
|
|
|
|
|||||
|
10. |
|
. . |
|
|
|
|
|
. - |
- |
- |
: |
|
|
|
|
, 2016. - 940 . |
|
|
|
|
|
11. Differential Games in Economics and Management Science / Dockner E., Jorgensen S., |
|||||||||
Long N.V., Sorger G. – Cambridge University Press, 2000. - 382 . |
|
|
|
|
||||||
|
12. |
|
. ., |
|
. ., |
. . |
|
. – |
.: |
- |
|
13. |
, 2012. - 432 . |
|
|
/ |
|
. ., |
|
|
|
|
|
|
|
|
|
|
|
|||
. |
., |
. |
., |
. . - |
.: |
, 1983. - 393 . |
|
|
|
|
|
14. |
|
. ., |
. . |
|
// |
|
|
|
- |
|
, 2014 (6), 86-102. |
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|||
|
15. |
|
. ., |
. |
., |
. . |
|
|
|
|
|
|
, 2016, 8(4), 14-29. |
|
// |
|
|
|
|
||
|
|
|
|
|
|
|
|
9
16.Ougolnitsky G.A., Usov A.B. Computer Simulations as a Solution Method for Differential Games // Computer Simulations: Advances in Research and Applications. Eds. M.D. Pfeffer and E. Bachmaier. - N.Y.: Nova Science Publishers, 2018. P.63-106.
17.Olsder G. J. Phenomena in inverse Stackelberg games, part 2: Dynamic problems // Journal of Optimization Theory and Applications, 2009, 143 (3), 601–618.
18.Gorelov M.A., Kononenko A.F. Dynamic models of conflicts. III. Hierarchical games //
Automation and Remote Control, 2015, 76(2), 264-277. |
|
|
|
|||
19. |
. . |
|
|
|
// |
- |
|
. 2018. №1. URL: ivdon.ru/ru/magazine/archive/n1y2018/4670. |
|
||||
20. |
. ., |
. ., |
. . |
|
|
// |
|
|
|
, 2014, 6(4), 535-542. |
|||
|
|
|
|
|||
21. |
. ., |
. ., |
. . |
|
|
- |
|
|
|
, 2015, 7(2), 281-288. |
// |
||
|
|
|
|
|||
22. |
. ., |
. ., |
. . |
|
- |
- |
. |
. 55. - ., 2015. |
.326-342. |
|
|
// |
|
|
|
|
|
|||
23. |
. ., |
. ., |
. ., |
|
. ., |
. ., |
. ., |
. . |
- |
|
|
|
- |
|
// |
|
. |
|
. 55. - ., 2015. .343-361. |
|
24. |
. ., |
. ., |
|
. . |
. |
|
|
, 2016, 28(7), 96-106. |
|
|
// |
|
|
|
|
|
|
|
||
25. |
. ., |
. ., |
. . |
. |
- |
|
|
, 2017, 6, 122-137. |
|
|
|
// |
- |
|
|
|
|
|
|
|
26. |
. ., |
|
. ., |
. . |
|
|
|
|
( |
. 2016. №4. |
) // |
. |
|
- |
. |
|
.25-29. |
|
27.Rokhlin D.B., Ougolnitsky G.A., Usov A.B. A two-level model of optimal harvesting under parameter uncertainty // Far East Journal of Mathematical Sciences, 2017, 102(7), 1365-1380.
28.Ougolnitsky G.A. A System Approach to the Regional Sustainable Management // Ad-
vances in Systems Science and Applications, 2017, 17(2), 52-62. |
|
||||
29. |
. |
., |
. ., |
. . |
|
|
. 2017. №6. |
.35-47. |
|
// |
- |
|
|
|
|
||
30. |
. ., |
. ., |
. . |
- |
|
. 71. .: |
, 2018. .61-97. |
// |
. |
||
|
|
||||
31. |
|
. ., |
. . |
- |
|
|
|
|
|
// |
, |
2016, 8(4), 673-684. |
|
|
|
|
32. Dyachenko V.K., Ougolnitsky G.A., Tarasenko L.V. Computer Investigation of a Game Theoretic Model of Social Partnership in the System of Continuing Professional Education // Ad-
vances in Systems Science and Applications, 2015, 15(4), 320-328. |
|
|
||||
33. |
- |
. ., |
. ., |
. . |
|
- |
|
|
|
: |
|
( |
- |
, 2018, 4, 15-24. |
|
|
) // |
|
- |
|
|
|
|
|
|
||
|
|
|
|
10 |
|
|