
- •Б.Л. Павлов, в.Н. Белко теория открытых равновесных систем и её применение в физике
- •Введение
- •1.Теория открытых объёмных равновесных систем
- •Закрытые и открытые объёмные однокомпонентные равновесные системы
- •Равновесные состояния закрытой и открытой объёмных систем
- •Равновесные процессы в закрытых объёмных системах
- •1.4. Основное уравнение термодинамики открытых однокомпонентных объёмных равновесных систем
- •1.5. Уравнение состояния открытых однокомпонентных объёмных равновесных систем
- •1.6. Невозможность осуществления изопроцессов в открытых объёмных системах
- •1.7. Понятие объёмной плотности теплоёмкости однокомпонентной открытой равновесной системы
- •1.8. Связь объёмной плотности теплоёмкости с равновесным давлением открытой системы
- •2. Идеальный бозе-газ, состоящий из частиц, масса покоя которых не равна нулю
- •2.1. Применение распределений Бозе и Ферми к идеальным газам, состоящим из частиц, масса покоя которых не равна нулю
- •2.2 Нахождение элементарного числа квантовых состояний частицы
- •2.3. Переход от суммирования по квантовому числу к интегрированию по классическому фазовому пространству
- •2.4. Расчётные формулы для определения термодинамических характеристик идеального бозе-газа
- •2.5. Определение температуры вырождения идеального бозе-газа, состоящего из частиц
- •2.6. Определение зависимости числа бозонов от температуры в вырожденном идеальном бозе-газе
- •2.7. Конденсация Бозе-Эйнштейна
- •2.8. Физический смысл температуры вырождения идеального бозе-газа, состоящего из частиц
- •2.9. Невырожденный идеальный бозе-газ при высоких температурах
- •2.10. Определение числа степеней свободы частицы и квазичастицы
- •2.11. Теплоёмкости идеального больцмановского газа
- •2.12. Плотность внутренней энергии вырожденного идеального бозе-газа
- •2.13. Уравнение состояния вырожденного идеального бозе-газа
- •3. Связь между квазиклассическим и квантовым фазовыми пространствами частицы
- •3.1. Волновая функция для свободной частицы
- •3.2. Периодические граничные условия
- •3.3. Нормировка волновой функции
- •3.4. Собственные функции и собственные значения операторов h, Hx , Hy , Hz
- •3.5. Собственные волновые функции и собственные значения операторов
- •3.6. Собственные функции и собственные значения операторов Гx, Гy, Гz
- •3.7. Собственные функции и собственные значения операторов состояний частицы
- •3.9. Одномерные квантовые фазовые пространствa частицы
- •3.10. Трёхмерное пространство квантовых состояний частицы
- •3.11. Трёхмерное квантовое фазовое пространство частицы
- •3.12. Классическое фазовое пространство
- •3.13. Двумерное классическое фазовое пространство частицы
- •3.14. Двумерное квазиклассическое фазовое пространство частицы
- •3.15. Связь двумерного квазиклассического фазового пространства с одномерным квантовым фазовым пространством
- •3.16. Связь шестимерного квазиклассического фазового пространства частицы с её трёхмерным квантовым фазовым пространством
- •3.17. Правило квантования движения частицы Бора
- •3.18. Дифференциальная форма распределений Бозе и Ферми
- •3.19. Вычисление термодинамических характеристик для идеальных ферми- и бозе-газов в квазиклассическом приближении
- •3.20. Квазиклассическое приближение
- •4. Плоские монохроматические волны и соответствующие им квазичастицы
- •4.1. Волновое уравнение
- •4.2. Плоские монохроматические волны
- •4.3.Уравнение Шрёдингера для плоской волны
- •4.4. Статистическая интерпретация волновой функции для плоской волны
- •4.5. Квантовое пространство волновых векторов плоской волны
- •4.6. Собственные функции операторов , ,
- •4.7. Квантовое пространство состояний плоской волны
- •4.8. Плоские волны и соответствующие им квазичастицы
- •4.9. Уравнение Шрёдингера для квазичастицы
- •4.10. Определение массы квазичастицы
- •4.11. Связь энергии квазичастицы с фазовой скоростью соответствующей ей плоской волны
- •4.12. Число степеней свободы квазичастицы
- •4.13. Переход от квантового описания плоской волны к квазиклассическому
- •4.14. Переход от плоской волны к соответствующей ей квазичастице
- •4.15. Волновая функция плоской волны в квазиклассическом приближении
- •4.16. Характеристики плоской волны и соответствующей ей квазичастицы в квазиклассическом приближении
- •4.17. Распределения Ферми и Бозе для квазичастиц
- •4.18. Правило квантования движения плоской волны
- •4.19. Фотон – квазичастица
- •5. Теория равновесного с веществом фотонного газа
- •5.1. Равновесный идеальный фотонный газ
- •5.2. Применение статистики Бозе-Эйнштейна к равновесному с веществом фотонному газу
- •5.3. Определение термодинамических характеристик равновесного фотонного газа
- •5.4. Конденсация Бозе-Эйнштейна в равновесном с веществом фотонном газе
- •5.5. Уравнение состояния равновесного с веществом фотонного газа
- •5.6. Плотность энтропии равновесного с веществом фотонного газа
- •5.7. Плотность теплоёмкости равновесного фотонного газа
- •5.8. Критические замечания
- •5.9. Спектральные характеристики и интегральные законы равновесного излучения
- •5.10. Первые спектральные законы равновесного излучения (законы смещения)
- •5.11. Вторые спектральные законы равновесного излучения
- •5.12. Средняя энергия фотона
- •6. Твёрдые тела. Теория идеального фононного газа
- •6.1. Уравнения движения упругой среды
- •6.2. Обобщённый закон Гука
- •6.3. Продольные и поперечные упругие волны
- •6.4. Подсчёт числа упругих плоских волн в объёме твёрдого тела, имеющего структуру
- •6.5. Идеальный фононный газ
- •6.6. Определение числа квантовых состояний «продольного» и «поперечного» фононов
- •6.7. Определение температуры вырождения идеального фононного газа
- •6.8. Конденсация Бозе-Эйнштейна в идеальном фононном газе
- •6.9. Нахождение плотности свободной энергии вырожденного идеального фононного газа
- •6.10. Уравнение состояния вырожденного идеального фононного газа
- •6.11. Нахождение плотности энтропии вырожденного идеального фононного газа
- •6.12. Нахождение плотности внутренней энергии вырожденного идеального фононного газа
- •6.13. Нахождение плотности теплоёмкости вырожденного идеального фононного газа
- •6.14. Уравнение состояния невырожденного идеального фононного газа при высоких температурах
- •6.15. Внутренняя энергия идеального фононного газа при высоких температурах
- •6.16. Теплоёмкость при постоянном объёме невырожденного идеального фононного газа при высоких температурах
- •6.17. Химический потенциал фонона при высоких температурах
- •6.18. Энтропия идеального фононного газа при высоких температурах
- •6.19. Вычисление температур вырождения фононного газа для некоторых твёрдых тел
- •6.20. Твёрдые тела в гармоническом приближении
- •6.21. Следствия гармонического приближения
- •6.22. Упругие волны с учётом нелинейных эффектов
- •6.23. Нелинейное одномерное волновое уравнение
- •6.24. Замечание о невырожденных твёрдых телах
- •7. Критика дебаевской теории теплоёмкости твёрдых тел
- •7.1. Основные положения теории Дебая
- •7.2. Определение внутренней энергии твёрдого тела
- •7.3. Определение теплоёмкости при постоянном объёме
- •7.4. Исследование теплоёмкости cv при высоких и низких температурах
- •7.5. Замечание по поводу нахождения Дебаем максимальной частоты упругих колебаний
- •7.6. Недостатки теории Дебая
- •8. Теория равновесных двухфазных однокомпонентных объёмных термодинамических систем
- •8.1 Равновесная двухфазная однокомпонентная объёмная система как открытая система
- •8.2. Термодинамические характеристики однокомпонентной двухфазной объёмной равновесной системы
- •8.3. Плотность теплоёмкости однокомпонентной равновесной двухфазной объёмной системы
- •8.4. Критические замечания
- •8.5. Условия равновесия двухфазной объёмной системы
- •8.6. О некорректности уравнения Клапейрона-Клаузиуса
- •8.7. Основное уравнение термодинамики однокомпонентных объёмных двухфазных равновесных систем
- •8.8. Уравнение состояния однокомпонентной равновесной объёмной двухфазной системы
- •8.9 . Связь плотности теплоёмкости однокомпонентной двухфазной объёмной системы с её равновесным давлением
- •8.10. Уравнения равновесных процессов в однокомпонентных двухфазных объёмных системах, имеющих только одну тройную точку
- •8.11. Нахождение термодинамических характеристик однокомпонентной двухфазной равновесной объёмной систем из экспериментальных данных
- •9. Теория однокомпонентной равновесной поверхностной системы
- •9.1. Понятие поверхностной системы
- •9.2. Поверхностная фаза как закрытая система
- •9.3. Поверхностная фаза – открытая система
- •9.4. Основное уравнение термодинамики поверхностной фазы как открытой системы
- •9.5. Уравнение состояния поверхностной системы
- •9.6. Условия равновесия двухфазной однокомпонентной объёмной системы с учётом межфазного натяжения
- •9.7. О некорректности определения коэффициента межфазного натяжения
- •9.8. Определение коэффициента межфазного натяжения
- •9.9. Об измерении коэффициента межфазного натяжения
- •9.10. Поверхностная плотность теплоёмкости поверхностной фазы
- •9.11. Невозможность введения понятия поверхностной фазы из условий фазового равновесия Гиббса
- •9.12. Нахождение термодинамических характеристик поверхностной фазы из экспериментальных данных
- •10. Двухкомпонентная модель вырожденного идеального бозе-газа, состоящнго из частиц, масса покоя которых не равна нулю
- •10.1. Определение температуры вырождения идеального бозе-газа, состоящего из частиц, в квазиквантовом приближении
- •10.2. О некорректности определения понятия «конденсация Бозе-Эйнштейна»
- •10.3. Физический смысл температуры вырождения идеального бозе-газа в случае квазиклассического приближения
- •10.4. Квазиквантовое приближение
- •10.5. Введение наименьшего, не равного нулю, уровня энергии бозона
- •10.6. Понятие о двухкомпонентной модели вырожденного идеального бозе-газа, состоящего из частиц
- •10.7. Зависимость числа «свободных» бозонов от температуры в случае квазиквантового приближения
- •10.8. Невозможность термодинамического равновесия между компонентами вырожденного идеального бозе-газа
- •10.9. Закон сохранения числа бозонов в замкнутой системе
- •10.10. Физический смысл температуры вырождения бозе-газа в случае квазиквантового приближения
- •10.11. Замечание о химических потенциалах вырожденного идеального бозе-газа
- •10.12. Конденсация Бозе-Эйнштейна в случае квазиквантового приближения
- •10.13. Определение плотности внутренней энергии компонента, состоящего из «свободных» бозонов
- •10.14. Определение внутренней энергии «конденсата» вырожденного идеального бозе-газа
- •10.15. Уравнение состояния «конденсата» вырожденного идеального бозе-газа
- •10.16. Определение химического потенциала бозонов «конденсата»
- •10.17. Уравнение состояния компонента вырожденного идеального бозе-газа, состоящего из «свободных» бозонов
- •10.18. Энтропия «конденсата» вырожденного идеального бозе-газа
- •10.19. Определение плотности энтропии компонента, состоящего из «свободных» бозонов
- •10.20. Плотность теплоёмкости компонента, состоящего из «свободных» бозонов
- •10.21. Теплоёмкость «конденсата» вырожденного идеального бозе-газа
- •10.22. Вычисление температур вырождений некоторых идеальных бозе-газов
- •11. Двхкомпонентная модель вырожденного идеального ферми-газа, состоящего из частиц, масса покоя которых не равна нулю
- •11.1. Определение температуры вырождения идеального ферми-газа в случае квазиклассического приближения
- •11.2. Зависимость числа «свободных» фермионов в вырожденном идеальном ферми-газе от температуры
- •11.3. «Конденсация Ферми-Дирака» в вырожденном идеальном ферми-газе в случае квазиклассического приближения
- •11.4. Понятие о двухкомпонентной модели вырожденного идеального ферми-газа
- •11.5. Конденсация Ферми-Дирака в идеальном ферми-газе в случае квазиквантового приближения
- •11.6. Граничное значение квантового числа (квантовое число Ферми)
- •11.7. Граничная энергия (энергия Ферми)
- •11.8. Граничный импульс (импульс Ферми)
- •11.9. Внутренняя энергия «конденсата» вырожденного идеального ферми-газа
- •11.10. Уравнение состояния «конденсата» вырожденного идеального ферми-газа
- •11.11. Определение химического потенциала фермионов «конденсата»
- •11.12. Замечание о компонентах вырожденного идеального ферми-газа
- •11.13. Закон сохранения числа фермионов в замкнутой системе
- •11.14. Физический смысл температуры вырождения идеального ферми-газа в случае квазиквантового приближения
- •11.15. Определение плотности внутренней энергии компонента, состоящего из «свободных» фермионов
- •11.16. Уравнение состояния компонента, состоящего из «свободных» фермионов
- •11.17. Энтропия «конденсата» вырожденного идеального ферми-газа
- •11.18. Плотность энтропии компонента, состоящего из «свободных» фермионов
- •11.19. Теплоёмкость «конденсата» вырожденного идеального ферми-газа
- •11.20. Плотность теплоёмкости компонента, состоящего из «свободных» фермионов
- •11.21. Критические замечания
- •11.22. Вычисление температуры вырождения электронного газа для некоторых металлов
- •12. Двухкомпонентная модель вырожденного твёрдого тела
- •12.1. Квазиклассическая модель твёрдого тела
- •12.2 Конденсации Бозе-Эйнштейна в фононном газе в случае квазиклассического приближения
- •12.3. Физический смысл температуры вырождения идеального фононного газа в случае квазиклассического приближения
- •12.4. Квазиквантовое приближение твёрдого тела
- •12.5. Двухкомпонентная модель вырожденного твёрдого тела
- •12.6. Конденсация Бозе-Эйнштейна в твёрдом теле в случае квазиквантового приближения
- •12.7. Невозможность термодинамического равновесия между компонентами вырожденного твёрдого тела
- •12.8. Закон сохранения числа фононов в замкнутой системе
- •12.9. Физический смысл температуры вырождения идеального фононного газа в случае квазиквантового приближения
- •12.10. Замечание о химических потенциалах фононов вырожденного идеального фононного газа
- •12.11. Определение внутренней энергии «конденсата»
- •12.12. Уравнение состояния «конденсата»
- •12.13. Определение химического потенциала фонона, представляющего собой трёхмерный осциллятор с нулевой энергией
- •12.14. Энтропия «конденсата»
- •12.15. Теплоёмкость «конденсата»
- •12.16. Давление в вырожденном идеальном фононном газе
- •12.17. Термодинамические характеристики компонента, состоящего из плоских упругих волн
- •13. О современной статистической термодинамике твёрдых тел
- •13.1. Современная модель твёрдого тела
- •13.2. Свободная энергия твёрдого тела
- •13.3. Неправильное определение понятия низких температур
- •13.4. Неправильное определение элементарного числа звуковых колебаний
- •13.5. Неправильное определение средней скорости звуковой волны
- •13.6. Термодинамические характеристики твёрдого тела при низких температурах
- •13.7. Невозможность введения понятия коэффициента объёмного расширения для твёрдого тела в гармоническом приближении
- •13.8. Свободная энергия твёрдого тела при высоких температурах
- •13.9. Нахождение внутренней энергии твёрдого тела при высоких температурах
- •13.10. Теплоёмкость твёрдого тел при высоких температурах
- •13.11. Неправильный выбор модели твёрдого тела при высоких температурах
- •13.12. Учёт конечной максимальной частоты колебаний
- •13.13. Термодинамические характеристики твёрдого тела с учётом конечной максимальной частоты колебаний
- •13.14. Теплоёмкость твёрдых тел при высоких и низких температурах
- •13.15. Уравнения состояний твёрдого тела при высоких и низких температурах
- •13.16. Определение числа степеней свободы квазичастицы твёрдого тела при высоких температурах
- •13.17. Физический смысл температуры Дебая
- •13.18. Выводы
- •Заключение
- •Библиографический список
- •Оглавление
- •394006 Воронеж, ул. 20-летия Октября, 84
Равновесные процессы в закрытых объёмных системах
Для закрытых объёмных термодинамических
систем (систем с постоянным числом
частиц
)
термодинамическими характеристиками
являются
- внутренняя энергия,
- свободная энергия,
- энтропия. Поскольку термодинамические
параметры закрытой системы связаны
друг с другом уравнением состояния
(1.1), то независимыми параметрами
оказывается любая пара из них, скажем
и
,
и, следовательно, термодинамические
характеристики закрытой системы
являются функциями двух параметров
и
.
Под равновесным процессом понимается
непрерывный переход из одного равновесного
состояния в другое также равновесное.
Основное уравнение термодинамики
закрытых объёмных систем для равновесных
(квазистатических) процессов имеет
следующий вид [6]
.
(1.4) Наиболее известными
равновесными процессами в закрытых
системах являются изопроцессы:
изотермический
),
изобарический
,
изохорический
,
адиабатический
.
1.4. Основное уравнение термодинамики открытых однокомпонентных объёмных равновесных систем
Выведем основное уравнение термодинамики для открытых однокомпонентных объёмных равновесных систем [1]. Для этого уравнение (1.4) запишем в следующей форме
, (1.5)
где
,
. (1.6)
Здесь - объёмная плотность энтропии, - объёмная плотность внутренней энергии являются характеристиками открытой системы. Производя в уравнении (1.5) дифференцирование, придём к следующему уравнению
, (1.7)
где
(1.8)
-
термодинамический потенциал Гиббса.
Выше было показано, что равновесное
состояние открытой объёмной системы
не должно зависеть от её объёма. Очевидно,
для этого необходимо, чтобы множитель
в (1.7) перед
обратился в нуль. Это возможно, когда
.
Таким образом, для того чтобы объёмная
термодинамическая система была открыта,
необходимо равенство нулю её
термодинамического потенциала Гиббса
.
Для однокомпонентных систем, учитывая
что
,
последнее условие эквивалентно равенству
нулю химического потенциала
её частиц
.
Полагая в (1.7) µ равным нулю, получим
основное уравнение термодинамики для
однокомпонентных равновесных открытых
объёмных систем
(1.9)
1.5. Уравнение состояния открытых однокомпонентных объёмных равновесных систем
Выведем уравнение состояния для однокомпонентной открытой равновесной системы. Полагая в уравнении (1.8) равным нулю и деля обе части его на , получим
(1.10)
После дифференцирования этого уравнения получим
(1.11) Учитывая
основное уравнение термодинамики для
открытых систем (1.9), последнее уравнение
можно записать так
=
(1.12) Уравнение (1.12) представляет собой
уравнение состояния любой открытой
однокомпонентной объёмной равновесной
системы, записанное в неявном виде. Это
же уравнение является и уравнением
одного единственного равновесного
процесса в любой открытой однокомпонентной
объёмной системе - процесса, связанного
с изменением числа частиц при переходе
этой открытой системы из одного её
равновесного состояния в другое.
Этому уравнению можно придать ещё и другой вид
= U ´(T ) + P (T ) . (1.13)
Уравнение (1.13) было впервые получено Л. Больцманом [7] при исследовании им теплового излучения. Далее он использовал связь между плотностью энергии электромагнитного поля и давлением, производимым им на тела, установленную Дж. Максвеллом
(1.14) Подставляя
(1.14) в (1.13) и решая его относительно
,
Больцман получил уравнение равновесного
процесса при тепловом излучении
σ
(1.15) где
- постоянная Стефана-Больцмана. Согласно
сказанному выше уравнение (1.15) является
и уравнением состояния равновесного
фотонного газа как открытой равновесной
системы. Для получения уравнения
состояния для любой открытой
однокомпонентной объёмной системы в
(1.12) необходимо знать зависимость
плотности энтропии
от температуры
.
Если эта зависимость найдена, то
подставляя
в (1.12) и интегрируя это выражение в
(1.12), можно найти конкретный вид уравнения
состояния для данной открытой равновесной
однокомпонентной системы. Заметим, что
все термодинамические характеристики
,
,
а также
(плотность свободной энергии),
(плотность числа частиц) являются
функциями только одной абсолютной
температуры.