
- •1. Основные понятия тпр. Основные модели и методы тпр. Основные этапы процесса пр. Основные понятия тпр
- •Основные методы и модели тпр
- •Этапы принятия решений
- •2. Классификация задач пр
- •3. Принятие решений Типы задач, критериев и общая схема решения. Общие группы методов решения многокритериальных задач принятия решений. Типы зпр
- •Типы критериев
- •Общие группы методов решения многокритериальных задач принятия решений
- •Исходная информация
- •Метод группировки критериев – нормализация функции полезности
- •1. Метод равномерной оптимальности
- •2. Метод справедливого компромисса
- •3. Метод свертывания критериев (аддитивный критерий)
- •4. Метод главного критерия
- •5. Метод идеальной точки (метод равномерного сжатия, минимального отличия от идеала)
- •Матрица отклонений
- •6. Метод последовательных уступок
- •Метод последовательных уступок
- •5. Нормализация критериев в условиях полной определенности. Принципы максимальной эффективности и минимизации рисков.
- •Исходная информация
- •6. Постановка задач линейного программирования. Примеры, различные формы задач и подходы решения. Постановка задач линейного программирования
- •Примеры, различные формы задач и подходы решения
- •7. Множества решений неравенств, уравнений и их систем в задачах линейного программирования. Допустимые решения. Допустимые базисные решения.
- •8. Сведения из теории выпуклых множеств. Выпуклые множества в n-мерном пространстве.
- •9. Задача линейного программирования в канонической форме. Основные теоремы о множествах оптимальных решений этой задачи.
- •10. Геометрический метод решения задачи линейного программирования m X n. Пример для задачи m X 2 (на максимум и минимум).
- •11. Аналитический метод решения задачи линейного программирования m X n (симплекс-метод). Для задач на максимум и минимум.
- •16. Ситуации равновесия в игре. Понятие седловой точки. Чистые стратегии двух игроков.
- •17. Смешанные стратегии двух игроков в матричной игре. Выигрыши игроков в игре. Теорема Дж. Фон Неймана о ситуации равновесия.
- •18. Аналитическое решение игры 2´2. Геометрическое решение игры 2´2.
- •Решение игры в смешанных стратегиях геометрическим методом
- •Решение игры 2×2
- •Решение игр вида 2хn и mх2
- •19. Лемма о масштабе. Условия эквивалентности смешанных стратегий двух игр.
- •20. Свойства оптимальных смешанных стратегий в матричной игре.
- •25. Вполне смешанная игра. Решение матричной игры n´n методом обратной матрицы.
- •26. Сведение матричной игры n´m к двойственной задаче линейного программирования. Общий подход. Методика решения матричной игры n´m симплекс-методом.
- •27. Неантагонистические игры. Биматричные игры. Постановка задачи. Функции выигрышей.
- •28. Примеры биматричных игр: дилемма узников, семейный спор, перекресток, ястребы-голуби и др.
- •36. Принятие решений в статистических играх в условиях полной определенности. Статистические методы принятия решений. Критерии Вальда, Сэвиджа, Гурвица, мм-критерий.
- •37. Принятие решений в статистических играх в условиях неопределенности. Статистические методы принятия решений. Критерии Байеса, Лапласа, Ходжа-Лемана.
- •38. Планирование эксперимента в статистических играх в условиях неопределенности.
- •39. Позиционные игры. Дерево решений. Позиционные игры с полной и неполной информацией. Информационное множество.
- •40. Нормализация позиционной игры. Привести общий пример для двухходовой позиционной игры с полной информацией.
- •41. Сведение позиционной игры к матричной в условиях неполной информации. На примере двухходовых и трехходовых игр.
- •42. Сведение позиционных игр к матричным и биматричным в условиях полной информации о стратегиях противника.
- •43. Позиционные игры со случайными ходами.
16. Ситуации равновесия в игре. Понятие седловой точки. Чистые стратегии двух игроков.
Ситуация i*j* в биматричной игре называется равновесной, если она приемлема для обоих игроков, то есть если любое отклонение от нее как для первого игрока, так и для второго только лишь уменьшает их выигрыш:
Равновесие Нэша - так называется набор стратегий в игре для двух и более игроков, в котором ни один участник не может увеличить выигрыш, изменив свою стратегию, если другие участники свои стратегии не меняют. Часто в играх с равновесием, изменение стратегии всех участников приведёт к увеличению выигрыша, но каждому отдельно взятому участнику игры невыгодно менять стратегию. Если верхняя и нижняя цена игры одинаковая, то считается, что матричная игра имеет седловую точку. Верно и обратное утверждение: если матричная игра имеет седловую точку, то верхняя и нижняя цены матричной игры одинаковы. Соответствующий элемент одновременно является наименьшим в строке и наибольшим в столбце и равен цене игры.
Таким
образом, если
,
то
-
оптимальная чистая стратегия первого
игрока, а
-
оптимальная чистая стратегия второго
игрока. То есть равные между собой нижняя
и верхняя цены игры достигаются на одной
и той же паре стратегий.
В этом случае матричная игра имеет решение в чистых стратегиях.
Пример 3. Дана матричная игра с платёжной матрицей
.
Найти нижнюю и верхнюю цену игры. Имеет ли данная матричная игра седловую точку?
Решение. Справа от платёжной матрицы выпишем наименьшие элементы в её строках и отметим максимальный из них, а снизу от матрицы - наибольшие элементы в столбцах и выберем минимальный из них:
Нижняя
цена игры совпадает с верхней ценой
игры. Таким образом, цена игры равна 5.
То есть
.
Цена игры равна значению седловой точки
.
Максиминная стратегия первого игрока
- вторая чистая стратегия, а минимаксная
стратегия второго игрока - третья чистая
стратегия. Данная матричная игра имеет
решение в чистых стратегиях.
17. Смешанные стратегии двух игроков в матричной игре. Выигрыши игроков в игре. Теорема Дж. Фон Неймана о ситуации равновесия.
Совокупность (комбинация) чистых стратегий A1, A2, …Am и B1, B2, …Bn в сочетании с векторами вероятностей выбора каждой из них называются смешанными стратегиями.
Основной
теоремой в теории конечных антагонистических
игр
является Теорема
фон Неймана:
каждая
конечная матричная игра имеет, по крайней
мере, одно оптимальное решение, возможно,
среди смешанных стратегий.
Из
этой теоремы следует, что не вполне
определённая игра имеет хотя бы одно
оптимальное решение в смешанных
стратегиях. В таких играх решением будет
пара оптимальных смешанных стратегий
P*
и Q*,
таких, что если один из игроков
придерживается своей оптимальной
стратегии, то и другому игроку не выгодно
отклоняться от своей оптимальной
стратегии.
Средний
выигрыш игрока A
определяется математическим ожиданием:
Если
вероятность (относительная частота)
применения стратегии отлична от нуля,
то такая стратегия называется активной.
Стратегии P*, Q* называются оптимальными смешанными стратегиями, если MA(P, Q*) ≤ MA(P*, Q*) ≤ MA(P*, Q) (1) В этом случае MA(P*, Q*) называется ценой игры и обозначается через V (V* ≤ V ≤ V*). Первое из неравенств (1)означает, что отклонение игрока A от своей оптимальной смешанной стратегии при условии, что игрок B придерживается своей оптимальной смешанной стратегии, приводит к уменьшению среднего выигрыша игрока A. Второе из неравенств означает, что отклонение игрока B от своей оптимальной смешанной стратегии при условии, что игрок A придерживается своей оптимальной смешанной стратегии, приводит к увеличению среднего проигрыша игрока B.