
- •1. Основные понятия тпр. Основные модели и методы тпр. Основные этапы процесса пр. Основные понятия тпр
- •Основные методы и модели тпр
- •Этапы принятия решений
- •2. Классификация задач пр
- •3. Принятие решений Типы задач, критериев и общая схема решения. Общие группы методов решения многокритериальных задач принятия решений. Типы зпр
- •Типы критериев
- •Общие группы методов решения многокритериальных задач принятия решений
- •Исходная информация
- •Метод группировки критериев – нормализация функции полезности
- •1. Метод равномерной оптимальности
- •2. Метод справедливого компромисса
- •3. Метод свертывания критериев (аддитивный критерий)
- •4. Метод главного критерия
- •5. Метод идеальной точки (метод равномерного сжатия, минимального отличия от идеала)
- •Матрица отклонений
- •6. Метод последовательных уступок
- •Метод последовательных уступок
- •5. Нормализация критериев в условиях полной определенности. Принципы максимальной эффективности и минимизации рисков.
- •Исходная информация
- •6. Постановка задач линейного программирования. Примеры, различные формы задач и подходы решения. Постановка задач линейного программирования
- •Примеры, различные формы задач и подходы решения
- •7. Множества решений неравенств, уравнений и их систем в задачах линейного программирования. Допустимые решения. Допустимые базисные решения.
- •8. Сведения из теории выпуклых множеств. Выпуклые множества в n-мерном пространстве.
- •9. Задача линейного программирования в канонической форме. Основные теоремы о множествах оптимальных решений этой задачи.
- •10. Геометрический метод решения задачи линейного программирования m X n. Пример для задачи m X 2 (на максимум и минимум).
- •11. Аналитический метод решения задачи линейного программирования m X n (симплекс-метод). Для задач на максимум и минимум.
- •16. Ситуации равновесия в игре. Понятие седловой точки. Чистые стратегии двух игроков.
- •17. Смешанные стратегии двух игроков в матричной игре. Выигрыши игроков в игре. Теорема Дж. Фон Неймана о ситуации равновесия.
- •18. Аналитическое решение игры 2´2. Геометрическое решение игры 2´2.
- •Решение игры в смешанных стратегиях геометрическим методом
- •Решение игры 2×2
- •Решение игр вида 2хn и mх2
- •19. Лемма о масштабе. Условия эквивалентности смешанных стратегий двух игр.
- •20. Свойства оптимальных смешанных стратегий в матричной игре.
- •25. Вполне смешанная игра. Решение матричной игры n´n методом обратной матрицы.
- •26. Сведение матричной игры n´m к двойственной задаче линейного программирования. Общий подход. Методика решения матричной игры n´m симплекс-методом.
- •27. Неантагонистические игры. Биматричные игры. Постановка задачи. Функции выигрышей.
- •28. Примеры биматричных игр: дилемма узников, семейный спор, перекресток, ястребы-голуби и др.
- •36. Принятие решений в статистических играх в условиях полной определенности. Статистические методы принятия решений. Критерии Вальда, Сэвиджа, Гурвица, мм-критерий.
- •37. Принятие решений в статистических играх в условиях неопределенности. Статистические методы принятия решений. Критерии Байеса, Лапласа, Ходжа-Лемана.
- •38. Планирование эксперимента в статистических играх в условиях неопределенности.
- •39. Позиционные игры. Дерево решений. Позиционные игры с полной и неполной информацией. Информационное множество.
- •40. Нормализация позиционной игры. Привести общий пример для двухходовой позиционной игры с полной информацией.
- •41. Сведение позиционной игры к матричной в условиях неполной информации. На примере двухходовых и трехходовых игр.
- •42. Сведение позиционных игр к матричным и биматричным в условиях полной информации о стратегиях противника.
- •43. Позиционные игры со случайными ходами.
6. Постановка задач линейного программирования. Примеры, различные формы задач и подходы решения. Постановка задач линейного программирования
Линейное программирование — область математики, разрабатывающая теорию и численные методы решения задач нахождения экстремума (максимума или минимума) линейной функции многих переменных при наличии линейных ограничений, т. е. равенств или неравенств, связывающих эти переменные.
В общей постановке задача линейного программирования (ЗЛП) формулируется следующим образом. Имеются какие-то переменные x = (x1, x2,…, xn) и линейная функция этих переменных, которая носит название целевой функции. Ставится задача: найти экстремум (максимум или минимум) целевой функции при условии, что переменные x удовлетворяют системе линейных равенств и/или неравенств.
Функция цели в задаче линейного программирования обычно записывается так:
.
Или в сокращённом виде с сигмой:
.
Можно встретить обозначение целевой функции и через C, и через F.
Система ограничений в задаче линейного программирования в канонической форме записывается так:
.
Или в сокращённом виде:
И система ограничений, и целевая функция имеют линейный характер, то есть содержат переменные только в первой степени.
Целевая функция. Её нужно максимизировать или минимизировать. Для того, чтобы функцию максимизировать, переменные, являющиеся её слагаемыми, должны принимать как можно большие значения в соответствии с условиями задачи. При минимизации - наоборот, меньшие. Обычно целевая функция выражает доходы или расходы.
Переменные. Каждая переменная, как правило, означает запасы одного из производственных факторов - вида сырья, времени, рабочей силы, технологических возможностей или чего-либо другого.
Ограничения. Очень просто. Например, в каждом уравнении (неравенстве) заданы ограничения перечисленных выше или других запасов, используемых для производства определённого вида продукции.
Примеры, различные формы задач и подходы решения
Задача линейного программирования математически может быть представлена в различных формах.
Общей задачей ЛП называется задача, которая состоит в определении максимального (минимального) значения функции
Помимо общей формы, различают еще две частные задачи линейного программирования - стандартную и основную.
Особенностью стандартной задачи ЛП является то, что ее ограничения представлены в виде линейных неравенств, а также условий неотрицательности на переменные, присутствующие в задаче:
Ограничения основной задачи ЛП представляют собой линейные ограничения-равенства, а также условия неотрицательности на переменные:
Задачи линейного программирования в случае двух переменных можно решить и графическим методом, в случаях, когда переменных больше, применяется симплекс-метод.
Примеры решения задач линейного программирования:
Пример №1. Предприятие выпускает продукцию двух разновидностей. Каждый вид продукции проходит обработку на трёх станках. При обработке 1 т продукции I вида первый станок используется 0 ч, второй станок – 1 ч, третий станок – 1 ч. При обработке 1 т продукции II вида первый станок используется 1 ч, второй станок – 4 ч, третий станок – 1 ч. Время работы станков ограничено и не может превышать для первого станка 7 ч, для второго 29 ч, для третьего 11 ч. При реализации 1 т продукции I вида предприятие получает прибыль 2 руб., а при реализации 1 т продукции II вида – 5 руб. Найти оптимальный план выпуска продукции каждого вида, дающий максимальную прибыль от реализации всей продукции.
3. Решим прямую задачу графически: