
- •Процессы катаболизма и анаболизма в клетках. Эндергонические и экзергонические реакции в живой клетке. Макроэргические соединения: определение, примеры.
- •3. Окислительное фосфорилирование: сущность процесса, обобщенная схема, субстраты, коэффициент р/о. Строение митохондрий.
- •1 Комплекс. Надн-КоQ-оксидоредуктаза
- •2 Комплекс. Фад-зависимые дегидрогеназы
- •3 Комплекс. КоQ-цитохром c-оксидоредуктаза
- •4 Комплекс. Цитохром с-кислород-оксидоредуктаза
- •5 Комплекс
- •1. Первичные акцепторы водорода
- •Разобщение тканевого дыхания и окислительного фосфорилирования. Терморегуляторная функция тканевого дыхания. Термогенная функция энергетического обмена в бурой жировой ткани.
- •Пируватдегидрогеназный мульферментный комплекс
- •11. Пируватдегидрогеназный комплекс животных. Строение, коферменты активных центров, тонкий механизм катализа.
- •12. Цикл лимонной кислоты: биологическая роль, последовательность реакций, характеристика ферментов.
- •Образование цитрата
- •Превращение цитрата в изоцитрат
- •Окислительное декарбоксилирование изоцитрата
- •Превращение сукцинил-КоА в сукцинат
- •Дегидрирование сукцината
- •Образование малата из фумарата
- •Дегидрирование малата
- •13. Ключевые реакции цикла лимонной кислоты. Механизмы регуляции скорости цикла лимонной кислоты.
- •Дегидрирование сукцината
- •Образование малата из фумарата
- •Дегидрирование малата
- •14. Анаплеротические реакции цикла лимонной кислоты (уравнения реакций, ферменты, биологическая роль). Анаболическое значение цикла лимонной кислоты.
- •Фосфоенолпируваткарбоксикиназа
- •Реакции катаболизма аминокислот
- •Реакции катаболизма жирных кислот
- •16. Основное понятие – углеводы. Классификация углеводов. Распространение углеводов в живой природе. Их биологическая роль.
- •Классификация моносахаридов
- •Производные моносахаридов
- •Строение некоторых производных моносахаридов
- •18. Дисахариды. Строение. Роль в питании. Олигосахариды. Их роль в рецепции. Группы крови.
- •Строение мальтозы и изомальтозы
- •Строение сахарозы
- •Строение лактозы и целлобиозы
- •19. Полисахариды. Крахмал. Гликоген. Гетерополисахариды. Строение и биологическая роль.
- •Строение целлюлозы Гетерополисахариды
- •20. Переваривание углеводов. Всасывание углеводов. Транспорт глюкозы в тканях.
- •Переваривание углеводов в желудочно-кишечном тракте
- •Транспорт моносахаров через мембраны Всасывание в кишечнике
- •Вторично-активный транспорт
- •Вторично-активный транспорт глюкозы и галактозы через мембраны энтероцитов Пассивный транспорт
- •Транспорт из крови через мембраны клеток
- •21. Синтез гликогена.
- •22. Распад гликогена и мобилизация глюкозы.
- •23. Регуляция синтеза и распада гликогена в печени. Роль гормонов и протеинкиназ в регуляции. Способы активации синтазы гликогена
- •Способы активации фосфорилазы гликогена
- •24. Гликолиз. Химические реакции и ферменты.
- •Реакция 1
- •Реакция 2
- •Реакция 3
- •Реакция 4
- •Реакция 5
- •Реакция 6
- •Реакция 9
- •Реакция 11
- •25. Глюконеогенез. Схема процесса, необратимые реакции. Субстратные циклы.
- •26. Регуляция гликолиза и глюконеогенеза. Фосфофруктокиназа-2 и ее роль в гормональной регуляции обмена углеводов.
- •Гормональная регуляция гликолиза, глюконеогенеза и обмена гликогена.
- •27. Анаэробный гликолиз. Превращение пировиноградной кислоты в анаэробных условиях. Лактатдегидрогеназа. Цикл Кори.
- •29. Схема пентозофосфатного цикла. Биологическое значение.
- •30. Регуляция содержания глюкозы в крови. Влияние инсулина и контринсулярных гормонов на уровень «сахара» в крови. Глюкозоксидазный метод определения содержания глюкозы крови.
- •Глюкозооксидазный метод
- •31. Наследственные нарушения обмена моносахаридов и дисахаридов.
Превращение сукцинил-КоА в сукцинат
Сукцинил-КоА - высокоэнергетическое соединение. Изменение свободной энергии гидролиза этого тиоэфира составляет ΔG0'= -35,7 кДж/моль. В митохондриях разрыв тиоэфирной связи сук-цинил-КоА сопряжён с реакцией фосфорилирования гуанозиндифосфата (ГДФ) до гуанозинтрифосфата (ГТФ).
Сукцинил-КоА → Сукцинат (ΔG0 = -10,36 кДж/моль).
Эту сопряжённую реакцию катализирует сукцинаттиокиназа. Промежуточный этап реакции - фосфорилирование молекулы фермента по одному из гистидиновых остатков активного центра. Затем остаток фосфорной кислоты присоединяется к ГДФ с образованием ГТФ. С ГТФ концевая фосфатная группа может переноситься на АДФ с образованием АТФ; эту обратимую реакцию катализирует нуклеозид-дифосфаткиназа.
ГТФ + АДФ ↔ ГДФ + АТФ.
Образование высокоэнергетической фосфо-ангидридной связи за счёт энергии субстрата (сукцинил-КоА) - пример субстратного фосфорилирования.
Дегидрирование сукцината
Образовавшийся на предьщущем этапе сукцинат превращается в фумарат под действием сукцинатдегидрогеназы. Этот фермент - флавопротеин, молекула которого содержит прочно связанный кофермент FAD. Сукцинат дегидрогеназа прочно связана с внутренней митохондриальной мембраной. Она состоит из 2 субъединиц, одна из которых связана с FAD. Кроме того, обе субъединицы содержат железо-серные центры; одна - Fe2S2, a другая - Fe4S4. В железо-серных центрах атомы железа меняют свою валентность, участвуя в транспорте электронов.
Образование малата из фумарата
Образование малата происходит при участии фермента фумаратгидратазы. Этот фермент более известен как фумараза. Фумараза - олигомерный белок, состоящий из 4 идентичных полипептидных цепей. Он расположен в матриксе митохондрий. Фумаразу относят к ферментам с абсолютной субстратной специфичностью: она катализирует гидратацию только транс-формы фумарата.
Дегидрирование малата
+В заключительной стадии цитратного цикла малат дегидрируется с образованием оксалоа-цетата. Реакцию катализирует NAD-зависимая малатдегидрогеназа, содержащаяся в матриксе митохондрий. Равновесие малатдегидрогеназной реакции сильно сдвинуто влево. Тем не менее, в интактных клетках эта реакция идёт слева направо, потому что продукт реакции, оксалоацетат, активно используется в цитратсинтазной реакции. В цитозоле содержится изоформа малат-дегидрогеназы, также NAD-зависимая, но не принимающая участие в цитратном цикле. Обе изоформы малатдегидрогеназы - димеры.
13. Ключевые реакции цикла лимонной кислоты. Механизмы регуляции скорости цикла лимонной кислоты.
Последовательность реакций цитратного цикла
Образование цитрата
Превращение цитрата в изоцитрат
Окислительное декарбоксилирование изоцитрата
Окислительное декарбоксилирование α-кетоглутарата
Превращение сукцинил-КоА в сукцинат
Сукцинил-КоА - высокоэнергетическое соединение. Изменение свободной энергии гидролиза этого тиоэфира составляет ΔG0'= -35,7 кДж/моль. В митохондриях разрыв тиоэфирной связи сук-цинил-КоА сопряжён с реакцией фосфорилирования гуанозиндифосфата (ГДФ) до гуанозинтрифосфата (ГТФ).
Сукцинил-КоА → Сукцинат (ΔG0 = -10,36 кДж/моль).
Эту сопряжённую реакцию катализирует сукцинаттиокиназа. Промежуточный этап реакции - фосфорилирование молекулы фермента по одному из гистидиновых остатков активного центра. Затем остаток фосфорной кислоты присоединяется к ГДФ с образованием ГТФ. С ГТФ концевая фосфатная группа может переноситься на АДФ с образованием АТФ; эту обратимую реакцию катализирует нуклеозид-дифосфаткиназа.
ГТФ + АДФ ↔ ГДФ + АТФ.
Образование высокоэнергетической фосфо-ангидридной связи за счёт энергии субстрата (сукцинил-КоА) - пример субстратного фосфорилирования.