
- •Процессы катаболизма и анаболизма в клетках. Эндергонические и экзергонические реакции в живой клетке. Макроэргические соединения: определение, примеры.
- •3. Окислительное фосфорилирование: сущность процесса, обобщенная схема, субстраты, коэффициент р/о. Строение митохондрий.
- •1 Комплекс. Надн-КоQ-оксидоредуктаза
- •2 Комплекс. Фад-зависимые дегидрогеназы
- •3 Комплекс. КоQ-цитохром c-оксидоредуктаза
- •4 Комплекс. Цитохром с-кислород-оксидоредуктаза
- •5 Комплекс
- •1. Первичные акцепторы водорода
- •Разобщение тканевого дыхания и окислительного фосфорилирования. Терморегуляторная функция тканевого дыхания. Термогенная функция энергетического обмена в бурой жировой ткани.
- •Пируватдегидрогеназный мульферментный комплекс
- •11. Пируватдегидрогеназный комплекс животных. Строение, коферменты активных центров, тонкий механизм катализа.
- •12. Цикл лимонной кислоты: биологическая роль, последовательность реакций, характеристика ферментов.
- •Образование цитрата
- •Превращение цитрата в изоцитрат
- •Окислительное декарбоксилирование изоцитрата
- •Превращение сукцинил-КоА в сукцинат
- •Дегидрирование сукцината
- •Образование малата из фумарата
- •Дегидрирование малата
- •13. Ключевые реакции цикла лимонной кислоты. Механизмы регуляции скорости цикла лимонной кислоты.
- •Дегидрирование сукцината
- •Образование малата из фумарата
- •Дегидрирование малата
- •14. Анаплеротические реакции цикла лимонной кислоты (уравнения реакций, ферменты, биологическая роль). Анаболическое значение цикла лимонной кислоты.
- •Фосфоенолпируваткарбоксикиназа
- •Реакции катаболизма аминокислот
- •Реакции катаболизма жирных кислот
- •16. Основное понятие – углеводы. Классификация углеводов. Распространение углеводов в живой природе. Их биологическая роль.
- •Классификация моносахаридов
- •Производные моносахаридов
- •Строение некоторых производных моносахаридов
- •18. Дисахариды. Строение. Роль в питании. Олигосахариды. Их роль в рецепции. Группы крови.
- •Строение мальтозы и изомальтозы
- •Строение сахарозы
- •Строение лактозы и целлобиозы
- •19. Полисахариды. Крахмал. Гликоген. Гетерополисахариды. Строение и биологическая роль.
- •Строение целлюлозы Гетерополисахариды
- •20. Переваривание углеводов. Всасывание углеводов. Транспорт глюкозы в тканях.
- •Переваривание углеводов в желудочно-кишечном тракте
- •Транспорт моносахаров через мембраны Всасывание в кишечнике
- •Вторично-активный транспорт
- •Вторично-активный транспорт глюкозы и галактозы через мембраны энтероцитов Пассивный транспорт
- •Транспорт из крови через мембраны клеток
- •21. Синтез гликогена.
- •22. Распад гликогена и мобилизация глюкозы.
- •23. Регуляция синтеза и распада гликогена в печени. Роль гормонов и протеинкиназ в регуляции. Способы активации синтазы гликогена
- •Способы активации фосфорилазы гликогена
- •24. Гликолиз. Химические реакции и ферменты.
- •Реакция 1
- •Реакция 2
- •Реакция 3
- •Реакция 4
- •Реакция 5
- •Реакция 6
- •Реакция 9
- •Реакция 11
- •25. Глюконеогенез. Схема процесса, необратимые реакции. Субстратные циклы.
- •26. Регуляция гликолиза и глюконеогенеза. Фосфофруктокиназа-2 и ее роль в гормональной регуляции обмена углеводов.
- •Гормональная регуляция гликолиза, глюконеогенеза и обмена гликогена.
- •27. Анаэробный гликолиз. Превращение пировиноградной кислоты в анаэробных условиях. Лактатдегидрогеназа. Цикл Кори.
- •29. Схема пентозофосфатного цикла. Биологическое значение.
- •30. Регуляция содержания глюкозы в крови. Влияние инсулина и контринсулярных гормонов на уровень «сахара» в крови. Глюкозоксидазный метод определения содержания глюкозы крови.
- •Глюкозооксидазный метод
- •31. Наследственные нарушения обмена моносахаридов и дисахаридов.
Пируватдегидрогеназный мульферментный комплекс
Суммарное уравнение отражает окислительное декарбоксилирование пирувата, восстановление НАД до НАДН и образование ацетил-SKoA.
Суммарное уравнение окисления пировиноградной кислоты
Превращение состоит из пяти последовательных реакций, осуществляется мультиферментным комплексом, прикрепленным к внутренней митохондриальной мембране со стороны матрикса. В составе комплекса насчитывают 3 фермента и 5 коферментов:
Пируватдегидрогеназа (Е1, ПВК-дегидрогеназа), ее коферментом является тиаминдифосфат (ТДФ), катализирует 1-ю реакцию.
Дигидролипоат-ацетилтрансфераза (Е2), ее коферментом является липоевая кислота, катализирует 2-ю и 3-ю реакции.
Дигидролипоат-дегидрогеназа (Е3), кофермент – ФАД, катализирует 4-ю и 5-ю реакции.
Помимо указанных коферментов, которые прочно связаны с соответствующими ферментами, в работе комплекса принимают участие коэнзим А и НАД.
Суть первых трех реакций сводится к декарбоксилированию пирувата (катализируется пируватдегидрогеназой, Е1), окислению полученного гидроксиэтила до ацетила и переносу ацетила на коэнзим А (катализируется дигидролипоат-ацетилтрансферазой, Е2).
Реакции синтеза ацетил-SКоА
Оставшиеся 2 реакции необходимы для возвращения липоевой кислоты и ФАД в окисленное состояние (катализируются дигидролипоат-дегидрогеназой, Е3). При этом образуется НАДН.
Реакции образования НАДН
10. Окислительное декарбоксилирование пировиноградной кислоты: биологическое значение, последовательность реакций. Механизмы регуляции скорости окислительного декарбоксилирования пировиноградной кислоты.
( см 9 вопрос)
11. Пируватдегидрогеназный комплекс животных. Строение, коферменты активных центров, тонкий механизм катализа.
Строение пируватдегидрогеназного комплекса Процесс окислительного декарбоксилирования пирувата катализирует сложнооргани-зованный пируватдегидрогеназный комплекс.
В пируватдегидрогеназный комплекс (ПДК) входят 3 фермента: пируватдекарбоксилаза (Е1), дигидролипоилтрансацетилаза (Е2) и дигидролипоилдегидрогеназа (Е3), а также 5 коферментов: тиаминдифосфат (ТДФ), липоевая кислота,. FAD, NAD+ и КоА.
Кроме того, в состав комплекса входят регуляторные субъединицы: протеинкиназа и фосфопротеинфосфатаза.
Все эти ферменты и коферменты объединены в мультиферментную систему, содержащую разные количества каждого из ферментов и имеющую молекулярную массу более 6×106.
В центре комплекса располагается дигидролипоилтрансацетилаза (Е2), образуя его ядро. К дигидролипоилтрансацетилазе присоединены молекулы: пируватдекарбоксилазы (Е1) и дигидролипоилдегидрогеназы (Е3).
Пируватдекарбоксилаза содержит прочно связанный с белковой частью ТДФ, а дигидроли-поилдегидрогеназа - FAD.Липоиллизиновые группы центрального фермента (Е2) функционируют как поворотные "кронштейны", переносящие атомы водорода и ацетильные группы от одной ферментной молекулы комплекса к другой.
Окислительное декарбоксилирование пирувата Превращение пирувата в ацетил-КоА включает 5 стадий
Стадия I. На этой стадии пируват соединяется с ТДФ в составе Е1 и подвергается декарбоксилированию.
Пируват + Е1-ТДФ → Гидроксиэтил-ТДФ + CO2.
Стадия П. Дигидролипоилтрансацетилаза (Е2) катализирует перенос атома водорода и ацетильной группы от ТДФ на окисленную форму липоиллизиновых групп с образованием ацетилтиоэфира липоевой кислоты.
Стадия III. На стадии III КоА взаимодействует с ацетильным производным Е2, в результате чего образуются ацетил-КоА и полностью восстановленный липоильный остаток, простетическая группа Е2.
Стадия IV. На стадии IV дигидролипоилде-гидрогеназа (Е3) катализирует перенос атомов водорода от восстановленных липоильных групп на FAD - простетическую группу фермента Е3.
Стадия V . На стадии V восстановленный FADH2 передаёт водород на NAD+ с образованием NADH.
Пируватдегидрогеназный комплекс характеризуется большим отрицательным окислительно-восстановительным потенциалом, который обеспечивает наряду с восстановлением кофермента (NADH) образование высокоэнергетической тиоэфирной связи в ацетил-КоА