Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция. Растворы 1.docx
Скачиваний:
27
Добавлен:
11.07.2021
Размер:
1.12 Mб
Скачать

Основные способы выражения концентрации растворов:

1. Массовая доля вещества, выраженная в процентах (или процентная концентрация) – масса растворенного вещества, содержащегося в 100 г раствора.

15% -й раствор NaOH – это значит, что 15 г NaOH содержится в 100 г раствора, т.е. раствор состоит из 15 г NaOH 85 г Н2О .

m р-го в-ва

ω = ———— (×100%) , %

m р-а

  1. Молярная концентрация – число молей растворенного вещества, содержащегося в 1 литре раствора.

n р-го в-ва

C = ————, моль/л (М)

V р-а

n – число молей растворенного вещества

V – объем раствора (л)

1 М HNO3 – одно-молярный раствор HNO3 , 1 л такого раствора содержит 1 моль HNO3 или (1+14+48) = 63 г.

3. Мольная доля – отношение числа молей данного вещества к общему числу молей всех веществ, имеющихся в растворе.

Для бинарного раствора : N1 – раствор

n1 N2 – растворимое вещества

N1 = ————

n1 + n2 N1 + N2 = 1

  1. Нормальная концентрация (нормальность) или эквивалентная концентрация, – число эквивалентов растворенного вещества, содержащихся в 1 л раствора.

n Э р-го в-ва

CЭ = ————, г-экв/л (н)

  1. V р-а

n Э – число эквивалентов растворенного вещества

V – объем раствора (л)

1 н H2 SO4 – одно-нормальный раствор H2 SO4 , 1 л такого раствора содержит 1 г-эквивалент H2 SO4 или (2+32+64)/ 2 = 49 г.

Единица измерения концентрации нормального раствора – г-экв/л. После численного значения обычно применяют сокращение н. Например, 1 н. H2SO4 означает раствор, в литре которого содержится 1 эквивалент серной кислоты, т. е. Cн(½H2SO4) = 1 моль/л (имеется в виду полная нейтрализация серной кислоты щелочью). Молярная масса эквивалента серной кислоты M(½H2SO4) = M(H2SO4)/2 = 49 г/моль. В отличие от молярной массы вещества молярная масса эквивалента кислоты, основания или соли не постоянна и зависит от реакции, в которой участвует вещество.

Пользуясь растворами, концентрация которых выражена нормальностью, легко заранее рассчитать, в каких объемных отношениях они должны быть смешаны, чтобы растворенные вещества прореагировали без остатка. Пусть V1 л раствора вещества 1 с нормальностью Сэ1 реагирует с V2 л раствора вещества 2 с нормальностью Сэ2. Это означает, что в реакцию вступило N1V1 эквивалентов вещества 1 и N2V2 эквивалентов вещества 2. Но вещества реагируют в эквивалентных количествах, следовательно

V1× Сэ1 = V2× Сэ2. (это выражение иногда называют законом эквивалентов)

или

V1 :V2 = Сэ2 : Сэ1

Таким образом, объемы растворов реагирующих веществ обратно пропорциональны их нормальностям.

На основании этой зависимости можно не только вычислять требуемые для проведения реакций объемы растворов, но и обратно, по объемам затраченных на реакцию растворов находить их концентрации.

  1. Моляльная концентрация – число молей растворенного вещества, содержащегося в 1000 г растворителя.

n р-го в-ва

Cm = ————, моль/кг

m р-ля

n – число молей растворенного вещества

m – масса раствора (кг или г)

1 М HNO3 – одно-моляльный раствор HNO3 , для приготовления такого раствора в 1 кг воды растворяют 1 моль HNO3 или (1+14+48) = 63 г.

Процесс растворения – представляет собой совокупность физических и химических явлений.

В конце XIX в. Растворение считалось физическим прцессом, а растворы – физическими образованиями, в которых отсутствовали какие-либо взаимодействия между растворителем и растворенным веществом.

Д.И. Менделеев создал химическую теорию растворов и показал, что образование растворов происходит вследствие химического взаимодействия меду растворителем и растворенным веществом.

CuSO4 (безводный)  Cu +2 (белый)

CuSO4 · nH2O (голубой)  Cu+2

В отличие от химических соединений, растворы имеют переменный состав, т.е. их состав может изменяться в широких пределах, не нарушая однородности.

Современная физико-химическая теория растворов исходит из того, что при растворении можно выделить три основных процесса:

1) разрушение химических и межмолекулярных связей растворяющихся веществ, сопровождающееся увеличением Н системы, т.е. Н1 > 0 ;

2) химическое взаимодействие растворителя и растворяющегося вещества, с образованием новых соединений – сольватов (или гидратов, если растворителем является вода).

При этом Н уменьшается и Н2 < 0 ;

Сольваты образуются по ион-дипольному типу взаимодействия за счет электростатических сил, но могут образовываться по донорно-акцепторному типу взаимодействия.

3) самопроизвольное перемешивание раствора, гомогенизация раствора вследствие диффузии, что приводит к увеличению Н системы, Н3 > 0 ;

Суммарный тепловой эффект процесса растворения:

ΔΝ = ΔΝ1 + ΔΝ2 + ΔΝ3 кДж .

Тепловой эффект процесса растворения – это теплота, которая выделяется или поглощается в процессе растворения вещества.

Процесс растворения протекает самопроизвольно, если G < 0 ;

Вещества при растворении и сами претерпевают изменения и изменяют свойства растворителя в соответствии со своей химической природой.

Свойства растворов, зависящие от числа частиц растворенного вещества, называются коллигативными. К коллигативным свойствам растворов относят:

  • понижение давление насыщенного пара растворителя;

  • повышение температуры кипения растворителя;

  • понижение температуры затвердевания (кристаллизации) растворителя;

  • осмотическое давление раствора.

Количественное описание свойств растворов оказалось возможным с привлечением модели идеального раствора, то есть такого раствора, в котором межмолекулярное поле сил смешиваемых компонентов одинаково. В данном случае неважно, в каком окружении находится молекула растворителя, или растворенного вещества. Для таких растворов

- изменение энтальпии образования раствора (тепловой эффект растворения), ∆Н равно нулю;

- движущей силой процесса растворения является увеличение энтропии (∆s > 0);

- общий объем раствора равен сумме объемов растворителя и растворенного вещества.

К идеальным растворам по своим свойствам приближаются лишь очень разбавленные растворы, т.е. растворы с очень низкой концентрацией растворенного вещества.

Свойства реальных растворов отличаются от свойств идеального раствора. Отклонение свойств раствора от идеального раствора в зависимости от его состава может служить основой для изучения взаимодействий между частицами в растворе. Так отклонение в свойствах растворов электролитов (веществ, растворы и расплавы которых проводят электрический ток), свидетельствующее о том, что в них содержится большее число частиц, чем можно было ожидать, послужило отправной точкой для создания С. Аррениусом теории электролитической диссоциации.